scholarly journals Comparison of vesicular stomatitis virus pseudotyped with the S proteins from a porcine and a human coronavirus

2009 ◽  
Vol 90 (7) ◽  
pp. 1724-1729 ◽  
Author(s):  
Christel Schwegmann-Weßels ◽  
Jörg Glende ◽  
Xiaofeng Ren ◽  
Xiuxia Qu ◽  
Hongkui Deng ◽  
...  

The surface proteins S of severe acute respiratory syndrome coronavirus (SARS-CoV) and transmissible gastroenteritis virus (TGEV) were compared for their ability to mediate infection of viral pseudotypes based on vesicular stomatitis virus (VSV). The cell tropism of the respective pseudotypes corresponded to the tropism of the viruses from which the S protein was derived. Higher infectivity values were obtained with the SARS-CoV S protein than with the TGEV S protein. Differences were observed with respect to the importance of the cytoplasmic tail and the membrane anchor of the S proteins. In the case of the SARS-CoV S protein, truncation of the cytoplasmic tail resulted in increased infectivity. For the TGEV S protein, the inactivation of an intracellular retention signal in the cytoplasmic tail was required. Exchange of the membrane anchor of the S proteins led to a low infection efficiency. Our results indicate that related glycoproteins may show substantial differences in their ability to mediate pseudotype infection.

Author(s):  
Sarah A. Almahboub ◽  
Abdullah Algaissi ◽  
Mohamed A. Alfaleh ◽  
M-Zaki ElAssouli ◽  
Anwar M. Hashem

Emerging highly pathogenic human coronaviruses (CoVs) represent a serious ongoing threat to the public health worldwide. The spike (S) proteins of CoVs are surface glycoproteins that facilitate viral entry into host cells via attachment to their respective cellular receptors. The S protein is believed to be a major immunogenic component of CoVs and a target for neutralizing antibodies (nAbs) and most candidate vaccines. Development of a safe and convenient assay is thus urgently needed to determine the prevalence of CoVs nAbs in the population, to study immune response in infected individuals, and to aid in vaccines and viral entry inhibitors evaluation. While live virus-based neutralization assays are used as gold standard serological methods to detect and measure nAbs, handling of highly pathogenic live CoVs requires strict bio-containment conditions in biosafety level-3 laboratories. On the other hand, use of replication-incompetent pseudoviruses bearing CoVs S proteins could represent a safe and useful method to detect nAbs in serum samples under biosafety level-2 conditions. Here, we describe a detailed protocol of a safe and convenient assay to generate vesicular stomatitis virus (VSV)-based pseudoviruses to evaluate and measure nAbs against highly pathogenic CoVs. The protocol covers methods to produce VSV pseudovirus bearing the S protein of the Middle East respiratory syndrome-CoV (MERS-CoV) and the severe acute respiratory syndrome-CoV-2 (SARS-CoV-2), pseudovirus titration, and pseudovirus neutralizing assay. Such assay could be adapted by different laboratories and researchers working on highly pathogenic CoVs without the need to handle live viruses in biosafety level-3 environment.


2018 ◽  
Vol 93 (2) ◽  
Author(s):  
Yixuan Hou ◽  
Tea Meulia ◽  
Xiang Gao ◽  
Linda J. Saif ◽  
Qiuhong Wang

ABSTRACTPorcine epidemic diarrhea virus (PEDV) causes high mortality in neonatal piglets. The PEDV spike (S) protein contains two intracellular sorting motifs, YxxΦ (tyrosine-based motif YEVF or YEAF) and KVHVQ at the cytoplasmic tail, yet their functions have not been fully elucidated. Some Vero cell-adapted and/or attenuated PEDV variants contain ablations in these two motifs. We hypothesized that these motifs contribute to viral pathogenicity. By transiently expressing PEDV S proteins with mutations in the motifs, we confirmed that the motif KVHVQ is involved in retention of the S proteins in the endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC). In addition, we showed that the YxxΦ motif triggers endocytosis of S proteins. These two motifs synergistically regulate the level of S expressed on the cell surface. To investigate their role in viral pathogenicity, we generated three recombinant PEDVs by introducing deletions or a mutation in the two motifs of the infectious clone of PEDV PC22A strain (icPC22A): (i) icΔ10aa (ΔYxxΦEKVHVQ), (ii) icΔ5aa (ΔKVHVQ), and (iii) icYA (Y1378A, to an inactivated motif, AEVF). Infection of Vero cells with icΔ10aa resulted in larger syncytia and more virions, with reduced numbers of S protein projections on the surface compared with icPC22A. Furthermore, we orally inoculated five groups of 5-day-old gnotobiotic piglets with the three mutants, icPC22A, or a mock treatment. Mutant icΔ10aa caused less severe diarrhea rate and significantly milder intestinal lesions than icPC22A, icΔ5aa, and icYA. These data suggest that the deletion of both motifs can reduce the virulence of PEDV in piglets.IMPORTANCEMany coronaviruses (CoVs) possess conserved motifs YxxΦ and/or KxHxx/KKxx in the cytoplasmic tail of the S protein. The KxHxx/KKxx motif has been identified as the ER retrieval signal, but the function of the YxxΦ motif in the intracellular sorting of CoV S proteins remains controversial. In this study, we showed that the YxxΦ of PEDV S protein is an endocytosis signal. Furthermore, using reverse genetics technology, we evaluated its role in PEDV pathogenicity in neonatal piglets. Our results explain one attenuation mechanism of Vero cell-adapted PEDV variants lacking functional YxxΦ and KVHVQ motifs. Knowledge from this study may aid in the design of efficacious live attenuated vaccines against PEDV, as well as other CoVs bearing the same motif in their S protein.


Pathogens ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 2 ◽  
Author(s):  
Carlos M. Sanchez ◽  
Alejandro Pascual-Iglesias ◽  
Isabel Sola ◽  
Sonia Zuñiga ◽  
Luis Enjuanes

Transmissible gastroenteritis virus (TGEV) is an enteric coronavirus causing high morbidity and mortality in porcine herds worldwide, that possesses both enteric and respiratory tropism. The ability to replicate in the enteric tract directly correlates with virulence, as TGEVs with an exclusive respiratory tropism are attenuated. The tissue tropism is determined by spike (S) protein, although the molecular bases for enteric tropism remain to be fully characterized. Both pAPN and sialic acid binding domains (aa 506–655 and 145–155, respectively) are necessary but not sufficient for enteric tract infection. Using a TGEV infectious cDNA and enteric (TGEV-SC11) or respiratory (TGEV-SPTV) isolates, encoding a full-length S protein, a set of chimeric recombinant viruses, with a sequential modification in S protein amino terminus, was engineered. In vivo tropism, either enteric, respiratory or both, was studied by inoculating three-day-old piglets and analyzing viral titers in lung and gut. The data indicated that U655>G change in S gene (S219A in S protein) was required to confer enteric tropism to a respiratory virus that already contains the pAPN and sialic acid binding domains in its S protein. Moreover, an engineered virus containing U655>G and a 6 nt insertion at position 1124 (Y374-T375insND in S protein) was genetically stable after passage in cell cultures, and increased virus titers in gut by 1000-fold. We postulated that the effect of these residues in enteric tropism may be mediated by the modification of both glycosaminoglycan binding and S protein structure.


Author(s):  
Haijun Tang ◽  
Long Gao ◽  
Zhao Wu ◽  
Fang Meng ◽  
Xin Zhao ◽  
...  

SARS-coronavirus 2 (SARS-CoV-2), pathogen of coronavirus disease 2019 (COVID-19), is constantly evolving to adapt to the host and evade antiviral immunity. The newly emerging variants N501Y.V1 (B.1.1.7) and N501Y.V2 (B.1.351), first reported in the United Kingdom and South Africa respectively, raised concerns due to the unusually rapid global spread. The mutations in spike (S) protein may contribute to the rapid spread of these variants. Here, with a vesicular stomatitis virus (VSV)-based pseudotype system, we demonstrated that the pseudovirus bearing N501Y.V2 S protein has higher infection efficiency than pseudovirus with wildtype (WT) and D614G S protein. Moreover, pseudovirus with N501Y.V1 or N501Y.V2 S protein has better thermal stability than WT and D614G, suggesting these mutations of variants may increase the stability of SARS-CoV-2 S protein and virion. However, the pseudovirus bearing N501Y.V1 or N501Y.V2 S protein has similar sensitivity to inhibitors of protease and endocytosis with WT and D614G. These findings could be of value in preventing the spread of virus and developing drugs for emerging SARS-CoV-2 variants.


2021 ◽  
Author(s):  
Mijia Lu ◽  
Yuexiu Zhang ◽  
Piyush Dravid ◽  
Anzhong Li ◽  
Cong Zeng ◽  
...  

The current pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to dramatic economic and health burdens. Although the worldwide SARS-CoV-2 vaccination campaign has begun, exploration of other vaccine candidates is needed due to the uncertainties of the current approved vaccines such as durability of protection, cross-protection against variant strains, and costs of long-term production, and storage. In this study, we developed a methyltransferase-defective recombinant vesicular stomatitis virus (mtdVSV)-based SARS-CoV-2 vaccine candidate. We generated mtdVSVs expressing SARS-CoV-2 full-length spike (S), S1, or its receptor binding domain (RBD). All these recombinant viruses grew to high titers in mammalian cells despite high attenuation in cell culture. SARS-CoV-2 S protein and its truncations were highly expressed by the mtdVSV vector. These mtdVSV-based vaccine candidates were completely attenuated in both immunocompetent and immunocompromised mice. Among these constructs, mtdVSV-S induced high levels of SARS-CoV-2 specific neutralizing antibodies (NAbs) and Th1-biased T cell immune responses in mice. Syrian golden hamsters immunized with mtdVSV-S triggered SARS-CoV-2 specific NAbs that were higher than convalescent plasma from convalescent COVID-19 patients. In addition, hamsters immunized with mtdVSV-S were completely protected against SARS-CoV-2 replication in lung and nasal turbinate tissues, cytokine storm, and lung pathology. Collectively, our data demonstrate that mtdVSV expressing SARS-CoV-2 S protein is a safe and highly efficacious vaccine candidate against SARS-CoV-2 infection. Significance Viral mRNA cap methyltransferase (MTase) is essential for mRNA stability, protein translation, and innate immune evasion. Thus, viral mRNA cap MTase activity is a novel target for development of live attenuated or live vectored vaccine candidates. Here, we developed a panel of MTase-defective recombinant recombinant vesicular stomatitis virus (mtdVSV)-based SARS-CoV-2 vaccine candidates expressing full-length S, S1, or several versions of the RBD. These mtdVSV-based vaccine candidates grew to high titers in cell culture and were completely attenuated in both immunocompetent and immunocompromised mice. Among these vaccine candidates, mtdVSV-S induces high levels of SARS-CoV-2 specific neutralizing antibody (Nabs) and Th1-biased immune responses in mice. Syrian golden hamsters immunized with mtdVSV-S triggered SARS-CoV-2 specific NAbs that were higher than convalescent plasma from COVID-19 recovered patients. Furthermore, hamsters immunized with mtdVSV-S were completely protected against SARS-CoV-2 challenge. Thus, mtdVSV is a safe and highly effective vector to deliver SARS-CoV-2 vaccine.


2013 ◽  
Vol 176 (1-2) ◽  
pp. 16-32 ◽  
Author(s):  
Eric Hastie ◽  
Marcela Cataldi ◽  
Ian Marriott ◽  
Valery Z. Grdzelishvili

Sign in / Sign up

Export Citation Format

Share Document