scholarly journals Glycoprotein N subtypes of human cytomegalovirus induce a strain-specific antibody response during natural infection

2009 ◽  
Vol 90 (8) ◽  
pp. 1951-1961 ◽  
Author(s):  
Christiane Burkhardt ◽  
Susanne Himmelein ◽  
William Britt ◽  
Thomas Winkler ◽  
Michael Mach

Human cytomegalovirus (HCMV) encodes several highly polymorphic envelope glycoproteins; however, the biological relevance of this polymorphism is unclear. Glycoprotein N (gN) is one member of this polymorphic protein family. Four major gN genotypes (gN1–4) have been identified. We have tested the hypothesis that the gN polymorphism represents a mechanism to evade a neutralizing antiviral antibody response. Four recombinant viruses that differed only in the expression of the gN genotype were constructed on the genetic background of HCMV strain AD169. Exchange of gN genotypes had a minor detectable influence on virus replication, gN expression and gN–gM complex formation. Randomly selected human sera were analysed for neutralizing activity against the recombinant viruses. Of these, 70 % showed no difference in neutralizing titre between the viruses, whereas 30 % showed strain-specific neutralization. Differences in 50 % neutralization titre reached >8-fold. Viruses expressing the gN4 genotype were neutralized significantly better than those expressing the other gN genotypes. Strain specificity, or lack thereof, could not be attributed to the presence or absence of anti-gN antibodies, as all sera contained antibodies reacting with gN (as determined by ELISA). Thus, polymorphism of gN could contribute to evasion of an efficient neutralizing-antibody response and facilitate reinfection in previously seropositive individuals.

Vaccine ◽  
2011 ◽  
Vol 29 (48) ◽  
pp. 9075-9080 ◽  
Author(s):  
Dai Wang ◽  
Fengsheng Li ◽  
Daniel C. Freed ◽  
Adam C. Finnefrock ◽  
Aimin Tang ◽  
...  

2020 ◽  
Author(s):  
Matthew L. Goodwin ◽  
Helen S. Webster ◽  
Hsuan-Yuan Wang ◽  
Jennifer A. Jenks ◽  
Cody S. Nelson ◽  
...  

AbstractHuman cytomegalovirus (HCMV) is the most common congenital infection, and the leading nongenetic cause of sensorineural hearing loss (SNHL) in newborns globally. A gB subunit vaccine administered with adjuvent MF59 (gB/MF59) is the most efficacious tested to-date, achieving 50% efficacy in preventing infection of HCMV-seronegative mothers. We recently discovered that gB/MF59 vaccination elicited primarily non-neutralizing antibody responses, that HCMV strains acquired by vaccinees more often included strains with gB genotypes that are distinct from the vaccine antigen, and that protection against HCMV acquisition correlated with ability of vaccine-elicited antibodies to bind to membrane associated gB. Thus, we hypothesized that gB-specific non-neutralizing antibody binding breadth and function are dependent on their epitope and genotype specificity as well as their ability to interact with membrane-associated gB. Twenty-four gB-specific monoclonal antibodies (mAbs) isolated from naturally HCMV-infected individuals were mapped for gB domain specificity by binding antibody multiplex assay (BAMA) and for genotype preference binding to membrane-associated gB presented on transfected cells. We defined their non-neutralizing functions including antibody dependent cellular phagocytosis (ADCP) and antibody dependent cellular cytotoxicity (ADCC). The isolated gB-specific non-neutralizing mAbs were primarily specific for Domain II and linear antigenic domain 2 site 2 (AD2). We observed variability in mAb gB genotype binding preference, with increased binding to gB genotypes 2 and 4. Functional studies identified two gB-specific mAbs that facilitate ADCP and have binding specificities of AD2 and Domain II. This investigation provides novel understanding on the impact of gB domain specificity and antigenic variability on gB-specific non-neutralizing antibody responses.ImportanceHCMV is the most common congenital infection worldwide, but development of a successful vaccine remains elusive. gB-specific non-neutralizing mAbs, represent a distinct anti-HCMV Ab subset implicated in the protection against primary infection during numerous phase-II gB/MF59 vaccine trials. By studying non-neutralizing gB-specific mAbs from naturally infected individuals, this study provides novel characterization of binding site specificity, genotypic preference, and effector cell functions mediated by mAbs elicited in natural infection. We found that a panel of twenty-four gB-specific non-neutralizing mAbs bind across multiple regions of the gB protein, traditionally through to be targeted by neutralizing mAbs only, and bind differently to gB depending if the protein is soluble versus embedded in a membrane. This investigation provides novel insight into the gB-specific binding characteristics and effector cell functions mediated by non-neutralizing gB-specific mAbs elicited through natural infection, providing new endpoints for future vaccine development.


2019 ◽  
Vol 93 (17) ◽  
Author(s):  
Caroline Lehmann ◽  
Jessica Julia Falk ◽  
Nicole Büscher ◽  
Inessa Penner ◽  
Christine Zimmermann ◽  
...  

ABSTRACTThe development of a vaccine against human cytomegalovirus infection (HCMV) is a high-priority medical goal. The viral pentameric protein complex consisting of glycoprotein H (gH)/gL/UL128-131A (PC) is considered to be an important vaccine component. Its relevance to the induction of a protective antibody response is, however, still a matter of debate. We addressed this issue by using subviral dense bodies (DBs) of HCMV. DBs are exceptionally immunogenic. Laboratory HCMV strain DBs harbor important neutralizing antibody targets, like the glycoproteins B, H, L, M, and N, but they are devoid of the PC. To be able to directly compare the impact of the PC on the levels of neutralizing antibody (NT-abs) responses, a PC-positive variant of the HCMV laboratory strain Towne was established by bacterial artificial chromosome (BAC) mutagenesis (Towne-UL130rep). This strain synthesized PC-positive DBs upon infection of fibroblasts. These DBs were used in side-by-side immunizations with PC-negative Towne DBs. Mouse and rabbit sera were tested to address the impact of the PC on DB immunogenicity. The neutralizing antibody response to PC-positive DBs was superior to that of PC-negative DBs, as tested on fibroblasts, epithelial cells, and endothelial cells and for both animal species used. The experiments revealed the potential of the PC to enhance the antibody response against HCMV. Of particular interest was the finding that PC-positive DBs induced an antibody response that blocked the infection of fibroblasts by a PC-positive viral strain more efficiently than sera following immunizations with PC-negative particles.IMPORTANCEInfections with the human cytomegalovirus (HCMV) may cause severe and even life-threatening disease manifestations in newborns and immunosuppressed individuals. Several strategies for the development of a vaccine against this virus are currently pursued. A critical question in this respect refers to the antigenic composition of a successful vaccine. Using a subviral particle vaccine candidate, we show here that one protein complex of HCMV, termed the pentameric complex (PC), enhances the neutralizing antibody response against viral infection of different cell types. We further show for the first time that this not only relates to the infection of epithelial or endothelial cells; the presence of the PC in the particles also enhanced the neutralizing antibody response against the infection of fibroblasts by HCMV. Together, these findings argue in favor of including the PC in strategies for HCMV vaccine development.


2018 ◽  
Vol 115 (24) ◽  
pp. 6273-6278 ◽  
Author(s):  
Ilona Baraniak ◽  
Barbara Kropff ◽  
Lyn Ambrose ◽  
Megan McIntosh ◽  
Gary R. McLean ◽  
...  

Human cytomegalovirus (HCMV) is an important pathogen in transplant patients and in congenital infection. Previously, we demonstrated that vaccination with a recombinant viral glycoprotein B (gB)/MF59 adjuvant formulation before solid organ transplant reduced viral load parameters post transplant. Reduced posttransplant viremia was directly correlated with antibody titers against gB consistent with a humoral response against gB being important. Here we show that sera from the vaccinated seronegative patients displayed little evidence of a neutralizing antibody response against cell-free HCMV in vitro. Additionally, sera from seronegative vaccine recipients had minimal effect on the replication of a strain of HCMV engineered to be cell-associated in a viral spread assay. Furthermore, although natural infection can induce antibody-dependent cellular cytotoxicity (ADCC) responses, serological analysis of seronegative vaccinees again presented no evidence of a substantial ADCC-promoting antibody response being generated de novo. Finally, analyses for responses against major antigenic domains of gB following vaccination were variable, and their pattern was distinct compared with natural infection. Taken together, these data argue that the protective effect elicited by the gB vaccine is via a mechanism of action in seronegative vaccinees that cannot be explained by neutralization or the induction of ADCC. More generally, these data, which are derived from a human challenge model that demonstrated that the gB vaccine is protective, highlight the need for more sophisticated analyses of new HCMV vaccines over and above the quantification of an ability to induce potent neutralizing antibody responses in vitro.


2021 ◽  
Vol 218 (5) ◽  
Author(s):  
Marianna Agudelo ◽  
Martin Palus ◽  
Jennifer R. Keeffe ◽  
Filippo Bianchini ◽  
Pavel Svoboda ◽  
...  

Tick-borne encephalitis virus (TBEV) is an emerging human pathogen that causes potentially fatal disease with no specific treatment. Mouse monoclonal antibodies are protective against TBEV, but little is known about the human antibody response to infection. Here, we report on the human neutralizing antibody response to TBEV in a cohort of infected and vaccinated individuals. Expanded clones of memory B cells expressed closely related anti-envelope domain III (EDIII) antibodies in both groups of volunteers. However, the most potent neutralizing antibodies, with IC50s below 1 ng/ml, were found only in individuals who recovered from natural infection. These antibodies also neutralized other tick-borne flaviviruses, including Langat, louping ill, Omsk hemorrhagic fever, Kyasanur forest disease, and Powassan viruses. Structural analysis revealed a conserved epitope near the lateral ridge of EDIII adjoining the EDI–EDIII hinge region. Prophylactic or early therapeutic antibody administration was effective at low doses in mice that were lethally infected with TBEV.


2021 ◽  
Author(s):  
Harini Natarajan ◽  
Shiwei Xu ◽  
Andrew R. Crowley ◽  
Ssavannah E. Butler ◽  
Joshua A. Weiner ◽  
...  

While antibodies provide significant protection from SARS-CoV-2 infection and disease sequelae, the specific attributes of the humoral response that contribute to immunity are incompletely defined. In this study, we employ machine learning to relate characteristics of the polyclonal antibody response raised by natural infection to diverse antibody effector functions and neutralization potency with the goal of generating both accurate predictions of each activity based on antibody response profiles as well as insights into antibody mechanisms of action. To this end, antibody-mediated phagocytosis, cytotoxicity, complement deposition, and neutralization were accurately predicted from biophysical antibody profiles in both discovery and validation cohorts. These predictive models identified SARS-CoV-2-specific IgM as a key predictor of neutralization activity whose mechanistic relevance was supported experimentally by depletion. Validated models of how different aspects of the humoral response relate to antiviral antibody activities suggest desirable attributes to recapitulate by vaccination or other antibody-based interventions.


Author(s):  
Tara L. Steffen ◽  
E. Taylor Stone ◽  
Mariah Hassert ◽  
Elizabeth Geerling ◽  
Brian T. Grimberg ◽  
...  

AbstractNatural infection of SARS-CoV-2 in humans leads to the development of a strong neutralizing antibody response, however the immunodominant targets of the polyclonal neutralizing antibody response are still unknown. Here, we functionally define the role SARS-CoV-2 spike plays as a target of the human neutralizing antibody response. In this study, we identify the spike protein subunits that contain antigenic determinants and examine the neutralization capacity of polyclonal sera from a cohort of patients that tested qRT-PCR-positive for SARS-CoV-2. Using an ELISA format, we assessed binding of human sera to spike subunit 1 (S1), spike subunit 2 (S2) and the receptor binding domain (RBD) of spike. To functionally identify the key target of neutralizing antibody, we depleted sera of subunit-specific antibodies to determine the contribution of these individual subunits to the antigen-specific neutralizing antibody response. We show that epitopes within RBD are the target of a majority of the neutralizing antibodies in the human polyclonal antibody response. These data provide critical information for vaccine development and development of sensitive and specific serological testing.


Author(s):  
Sandile Cele ◽  
Inbal Gazy ◽  
Laurelle Jackson ◽  
Shi-Hsia Hwa ◽  
Houriiyah Tegally ◽  
...  

AbstractNew SARS-CoV-2 variants with mutations in the spike glycoprotein have arisen independently at multiple locations and may have functional significance. The combination of mutations in the 501Y.V2 variant first detected in South Africa include the N501Y, K417N, and E484K mutations in the receptor binding domain (RBD) as well as mutations in the N-terminal domain (NTD). Here we address whether the 501Y.V2 variant could escape the neutralizing antibody response elicited by natural infection with earlier variants. We were the first to outgrow two variants of 501Y.V2 from South Africa, designated 501Y.V2.HV001 and 501Y.V2.HVdF002. We examined the neutralizing effect of convalescent plasma collected from six adults hospitalized with COVID-19 using a microneutralization assay with live (authentic) virus. Whole genome sequencing of the infecting virus of the plasma donors confirmed the absence of the spike mutations which characterize 501Y.V2. We infected with 501Y.V2.HV001 and 501Y.V2.HVdF002 and compared plasma neutralization to first wave virus which contained the D614G mutation but no RBD or NTD mutations. We observed that neutralization of the 501Y.V2 variants was strongly attenuated, with IC50 6 to 200-fold higher relative to first wave virus. The degree of attenuation varied between participants and included a knockout of neutralization activity. This observation indicates that 501Y.V2 may escape the neutralizing antibody response elicited by prior natural infection. It raises a concern of potential reduced protection against re-infection and by vaccines designed to target the spike protein of earlier SARS-CoV-2 variants.


Viruses ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 422
Author(s):  
Federico Gobbi ◽  
Dora Buonfrate ◽  
Lucia Moro ◽  
Paola Rodari ◽  
Chiara Piubelli ◽  
...  

Although antibody levels progressively decrease following SARS-CoV-2 infection, the immune memory persists for months. Thus, individuals who naturally contracted SARS-CoV-2 are expected to develop a more rapid and sustained response to COVID-19 vaccines than naïve individuals. In this study, we analyzed the dynamics of the antibody response to the BNT162b2 mRNA COVID-19 vaccine in six healthcare workers who contracted SARS-CoV-2 in March 2020, in comparison to nine control subjects without a previous infection. The vaccine was well tolerated by both groups, with no significant difference in the frequency of vaccine-associated side effects, with the exception of local pain, which was more common in previously infected subjects. Overall, the titers of neutralizing antibodies were markedly higher in response to the vaccine than after natural infection. In all subjects with pre-existing immunity, a rapid increase in anti-spike receptor-binding domain (RBD) IgG antibodies and neutralizing antibody titers was observed one week after the first dose, which seemed to act as a booster. Notably, in previously infected individuals, neutralizing antibody titers 7 days after the first vaccine dose were not significantly different from those observed in naïve subjects 7 days after the second vaccine dose. These results suggest that, in previously infected people, a single dose of the vaccine might be sufficient to induce an effective response.


Sign in / Sign up

Export Citation Format

Share Document