scholarly journals Depletion of measles virus glycoprotein-specific antibodies from human sera reveals genotype-specific neutralizing antibodies

2009 ◽  
Vol 90 (12) ◽  
pp. 2982-2989 ◽  
Author(s):  
Rik L. de Swart ◽  
Selma Yüksel ◽  
Carianne N. Langerijs ◽  
Claude P. Muller ◽  
Albert D. M. E. Osterhaus

Measles virus (MV)-neutralizing antibodies in sera from vaccinated subjects are mainly directed against the haemagglutinin (H) protein. It has been shown previously that depletion of vaccination-induced H-specific antibodies by co-culture of sera with cells expressing the MV Edmonston strain H glycoprotein resulted in almost complete elimination of neutralizing activity. In the present study, MV H and/or fusion (F) protein-specific antibodies were depleted from sera of naturally immune subjects. Early convalescent samples were collected 1.5 years after a well-characterized measles outbreak in Luxembourg caused by a genotype C2 virus, whilst late convalescent samples were collected from healthy Dutch subjects born between 1960 and 1970. Depletion of both H- and F-specific antibodies completely eliminated virus-neutralizing (VN) activity against MV Edmonston. However, in the early convalescent samples, residual VN antibody against wild-type MV genotype C2 was detected. This demonstrated that, although the majority of MV-specific VN antibodies recognized epitopes conserved between different genotypes, genotype-specific VN epitopes were also induced. In sera depleted of H-specific antibodies only, VN activity against MV Edmonston was not completely eliminated, demonstrating the presence of F-specific VN antibodies. In conclusion, this study demonstrated that a fraction of VN antibodies induced by wild-type MV genotype C2 does not neutralize MV strain Edmonston. In addition, it was shown that, in sera from naturally immune donors, the majority of VN antibodies are specific for MV H protein, but up to 10 % of neutralizing antibodies are specific for MV F protein.

2005 ◽  
Vol 86 (2) ◽  
pp. 365-374 ◽  
Author(s):  
Sabine Santibanez ◽  
Stefan Niewiesk ◽  
Alla Heider ◽  
Jürgen Schneider-Schaulies ◽  
Guy A. M. Berbers ◽  
...  

Measles virus (MV) infection and vaccination induce long-lasting immunity and neutralizing-antibody responses that are directed against the MV haemagglutinin (H) and the fusion (F) protein. A new MV genotype, D7, emerged recently in western Germany and rapidly replaced the long-term endemically circulating genotypes C2 and D6. Analysis of the H gene of C2, D6, D7 and vaccine viruses revealed uniform sequences for each genotype. Interestingly, a consistent exchange of seven distinct amino acids in the D7 H was observed when compared with residues shared between C2, D6 and vaccine viruses, and one exchange (D416→N) in the D7 H was associated with an additional N-linked glycosylation. In contrast, the F gene is highly conserved between MVs of these genotypes. To test whether the D7 H protein escapes from antibody responses that were raised against earlier circulating or vaccine viruses, the neutralizing capacity of mAbs recognizing seven distinct domains on the H of an Edmonston-related MV was compared. The mAbs revealed a selective and complete loss of two neutralizing epitopes on the D7 H when compared with C2, D6 and vaccine viruses. To assess whether these alterations of the D7 H affect the neutralizing capacity of polyclonal B-cell responses, genotype-specific antisera were produced in cotton rats. However, no significant genotype-dependent difference was found. Likewise, human sera obtained from vaccinees (n=7) and convalescents (n=6) did not distinguish between the MV genotypes. Although the hypothesis of selection of D7 viruses by pre-existing neutralizing antibodies is compatible with the differing pattern of neutralizing epitopes on the H protein, it was not confirmed by the results of MV neutralization with polyclonal sera.


2019 ◽  
Vol 94 (2) ◽  
Author(s):  
Yuta Shirogane ◽  
Takao Hashiguchi ◽  
Yusuke Yanagi

ABSTRACT Measles virus (MeV) is an enveloped RNA virus bearing two envelope glycoproteins, the hemagglutinin (H) and fusion (F) proteins. Upon receptor binding, the H protein triggers conformational changes of the F protein, causing membrane fusion and subsequent virus entry. MeV may persist in the brain, infecting neurons and causing fatal subacute sclerosing panencephalitis (SSPE). Since neurons do not express either of the MeV receptors, signaling lymphocytic activation molecule (SLAM; also called CD150) and nectin-4, how MeV propagates in neurons is unknown. Recent studies have shown that specific substitutions in the F protein found in MeV isolates from SSPE patients are critical for MeV neuropathogenicity by rendering the protein unstable and hyperfusogenic. Recombinant MeVs possessing the F proteins with such substitutions can spread in primary human neurons and in the brains of mice and hamsters and induce cell-cell fusion in cells lacking SLAM and nectin-4. Here, we show that receptor-blind mutant H proteins that have decreased binding affinities to receptors can support membrane fusion mediated by hyperfusogenic mutant F proteins, but not the wild-type F protein, in cells expressing the corresponding receptors. The results suggest that weak interactions of the H protein with certain molecules (putative neuron receptors) trigger hyperfusogenic F proteins in SSPE patients. Notably, where cell-cell contacts are ensured, the weak cis interaction of the H protein with SLAM on the same cell surface also could trigger hyperfusogenic F proteins. Some enveloped viruses may exploit such cis interactions with receptors to infect target cells, especially in cell-to-cell transmission. IMPORTANCE Measles virus (MeV) may persist in the brain, causing incurable subacute sclerosing panencephalitis (SSPE). Because neurons, the main target in SSPE, do not express receptors for wild-type (WT) MeV, how MeV propagates in the brain is a key question for the disease. Recent studies have demonstrated that specific substitutions in the MeV fusion (F) protein are critical for neuropathogenicity. Here, we show that weak cis and trans interactions of the MeV attachment protein with receptors that are not sufficient to trigger the WT MeV F protein can trigger the mutant F proteins from neuropathogenic MeV isolates. Our study not only provides an important clue to understand MeV neuropathogenicity but also reveals a novel viral strategy to expand cell tropism.


2009 ◽  
Vol 83 (17) ◽  
pp. 8713-8721 ◽  
Author(s):  
Hiromi Okada ◽  
Masae Itoh ◽  
Kyosuke Nagata ◽  
Kaoru Takeuchi

ABSTRACT Wild-type measles virus (MV) isolated in B95a cells could be adapted to Vero cells after several blind passages. In this study, we have determined the complete nucleotide sequences of the genomes of the wild type (T11wild) and its Vero cell-adapted (T11Ve-23) MV strain and identified amino acid substitutions R516G, E271K, D439E and G464W (D439E/G464W), N481Y/H495R, and Y187H/L204F in the nucleocapsid, V, fusion (F), hemagglutinin (H), and large proteins, respectively. Expression of mutated H and F proteins from cDNA revealed that the H495R substitution, in addition to N481Y, in the H protein was necessary for the wild-type H protein to use CD46 efficiently as a receptor and that the G464W substitution in the F protein was important for enhanced cell-cell fusion. Recombinant wild-type MV strains harboring the F protein with the mutations D439E/G464W [F(D439E/G464W)] and/or H(N481Y/H495R) protein revealed that both mutated F and H proteins were required for efficient syncytium formation and virus growth in Vero cells. Interestingly, a recombinant wild-type MV strain harboring the H(N481Y/H495R) protein penetrated slowly into Vero cells, while a recombinant wild-type MV strain harboring both the F(D439E/G464W) and H(N481Y/H495R) proteins penetrated efficiently into Vero cells, indicating that the F(D439E/G464W) protein compensates for the inefficient penetration of a wild-type MV strain harboring the H(N481Y/H495R) protein. Thus, the F and H proteins synergistically function to ensure efficient wild-type MV growth in Vero cells.


2005 ◽  
Vol 79 (17) ◽  
pp. 11547-11551 ◽  
Author(s):  
Rik L. de Swart ◽  
Selma Yüksel ◽  
Albert D. M. E. Osterhaus

ABSTRACT The relative contribution of measles virus hemagglutinin (H)- or fusion protein (F)-specific antibodies to virus neutralization (VN) has not been demonstrated. We have depleted these specific antibodies from sera collected from young adults, who had been vaccinated during childhood, by prolonged incubation with viable transfected human melanoma cells expressing H or F. Simultaneous depletion of antibodies of both specificities completely abrogated VN activity. Depletion of F-specific antibodies only had a minimal effect, whereas removal of H-specific antibodies resulted in almost complete reduction of VN activity. These results demonstrate that measles virus neutralizing antibodies are mainly directed to the H protein.


2016 ◽  
Vol 90 (13) ◽  
pp. 5965-5977 ◽  
Author(s):  
Ivy Widjaja ◽  
Oliver Wicht ◽  
Willem Luytjes ◽  
Kees Leenhouts ◽  
Peter J. M. Rottier ◽  
...  

ABSTRACTAntibodies against the fusion (F) protein of respiratory syncytial virus (RSV) play an important role in the protective immune response to this important respiratory virus. Little is known, however, about antibody levels against multiple F-specific epitopes induced by infection or after vaccination against RSV, while this is important to guide the evaluation of (novel) vaccines. In this study, we analyzed antibody levels against RSV proteins and F-specific epitopes in human sera and in sera of vaccinated and experimentally infected cotton rats and the correlation thereof with virus neutralization. Analysis of human sera revealed substantial diversity in antibody levels against F-, G (attachment)-, and F-specific epitopes between individuals. The highest correlation with virus neutralization was observed for antibodies recognizing prefusion-specific antigenic site Ø. Nevertheless, our results indicate that high levels of antibodies targeting other parts of the F protein can also mediate a potent antiviral antibody response. In agreement, sera of experimentally infected cotton rats contained high neutralizing activity despite lacking antigenic site Ø-specific antibodies. Strikingly, vaccination with formalin-inactivated RSV (FI-RSV) exclusively resulted in the induction of poorly neutralizing antibodies against postfusion-specific antigenic site I, although antigenic sites I, II, and IV were efficiently displayed in FI-RSV. The apparent immunodominance of antigenic site I in FI-RSV likely explains the low levels of neutralizing antibodies upon vaccination and challenge and may play a role in the vaccination-induced enhancement of disease observed with such preparations.IMPORTANCERSV is an importance cause of hospitalization of infants. The development of a vaccine against RSV has been hampered by the disastrous results obtained with FI-RSV vaccine preparations in the 1960s that resulted in vaccination-induced enhancement of disease. To get a better understanding of the antibody repertoire induced after infection or after vaccination against RSV, we investigated antibody levels against fusion (F) protein, attachment (G) protein, and F-specific epitopes in human and animal sera. The results indicate the importance of prefusion-specific antigenic site Ø antibodies as well as of antibodies targeting other epitopes in virus neutralization. However, vaccination of cotton rats with FI-RSV specifically resulted in the induction of weakly neutralizing, antigenic site I-specific antibodies, which may play a role in the enhancement of disease observed after vaccination with such preparations.


2009 ◽  
Vol 90 (11) ◽  
pp. 2739-2745 ◽  
Author(s):  
Tim Finsterbusch ◽  
Anne Wolbert ◽  
Ingrid Deitemeier ◽  
Kerstin Meyer ◽  
Maria Mar Mosquera ◽  
...  

The linear haemagglutinin noose epitope (HNE; aa 379–410) is a protective B-cell epitope and considered to be highly conserved in both the vaccine and the wild-type measles virus (MeV) haemagglutinin (H) proteins. Vaccine virus-derived monoclonal antibodies (mAbs) BH6 and BH216, which target the HNE, neutralized MeVs of genotypes B3, C2, D4, D5, D6, D7 and D8, and the vaccine strain Edmonston Zagreb. In the case of genotype H1, only strain Berlin.DEU/44.01 was neutralized by these mAbs, whereas strains Shenyang.CHN/22.99 and Sofia.BGR/19.05 were not. The H gene sequences of these two strains showed an exchange of proline 397 (P397) to leucine (L397). Mutated H proteins, with P397 exchanged to L and vice versa, were compared with original H proteins by indirect fluorescence assay. H proteins exhibiting P397 but not those with L397 were recognized by BH6 and BH216. This indicates that L397 leads to the loss of the neutralizing HNE. In contrast, human sera obtained from vaccinees (n=10) did not discriminate between genotype H1 variants P397 and L397. This concurs with the epidemiological observation that the live-attenuated vaccine protects against both H1 variants. Furthermore, we demonstrated that MeVs of genotype H1 also lack the neutralizing epitopes defined by the vaccine virus-induced mAbs BH15, BH125 and BH47. The loss of several neutralizing epitopes, as shown for H1 viruses currently circulating endemically in Asia, implies that epitope monitoring should be considered to be included in measles surveillance.


2008 ◽  
Vol 48 (1) ◽  
pp. 42
Author(s):  
Made Setiawan ◽  
Agus Sjahrurachman ◽  
Fera Ibrahim ◽  
Agus Suwandono

Background Hemaglutinin (H) protein of measles virus is veryimportant in the process of host cell infection. H protein is alsoable to induce specific antibodies which can neutralize measlesvirus and block the cell infection.Objective This study aimed to explore the nucleotide and aminoacid sequence differences between wild-type measles virus (G2,G3 and D9) with CAM-70, Schwarz and Edmonston-wt vaccinevirus.Methods The exctration and amplification of the gene wereconducted in the laboratory using biomolecular technology. Thegene and protein analysis were conducted using the bioinformatictechnology.Results The results showed that the differences in nucleotidesequences were highest between wild-type virus and CAM-70vaccine virus (76-77 nucleotides), followed by Schwarz (61-64nucleotides) and Edmonston (60-63 nucleotides). The differencesin amino acid sequences were highest between wild-type virusand CAM-70 (24-29 residues), followed by Schwarz (13-20residues) and Edmonston (12-19 residues).Conclusion The Indonesian wild-type measles virus was geneticallycloser to Schwarz vaccine virus than CAM-70 vaccine virus,hence the neutralizing antibodies generated by Schwarz vaccinewere more specific against Indonesian wild-type virus comparedto CAM-70 vaccine.


2011 ◽  
Vol 51 (3) ◽  
pp. 123
Author(s):  
Made Setiawan ◽  
Agus Sjahrurachman ◽  
Fera Ibrahim ◽  
Agus Suwandono

Background Measles virus can cause high morbidity and mortality in infants and children. Fusion glycoprotein (F protein) found in the viral envelope is important for the host cell infection mechanism. F protein is immunogenic and may cause specific immune responses in the host. High variability is found in the F protein gene of vaccine viral strains compared to 'Wild type strains. This amino add sequence variability may result in a less specific immune response against other strains, possibly rendering thevaccine to be less effective.Objective To detennine the amino add sequence differences in critical sites of F protein in Mld type and vaccine measles virus strains in Indonesia.Methods We compared amino acid sequences of three genotypes of Mld type measles virus (02, 03 and D9) to those of the vaccine strains, CAM􀀸 70, Schwarz, and Edmonston􀀸wt type measles virus.Resul ts Analysis showed that there were differences at Fl􀀸F2 cleavage site, B cell epitopes, and H protein binding site between the CAM􀀸70 vaccine viral strains and Mld type strains. Schwarz vaccine strain differed from the wild type strains at the H protein binding site. A 03 wild type strain potential glycosylation site was also different from all other strains studied.Conclusion There were differences in the critical sites of F protein between Mld type strains and the CAM􀀸70 and Schwarz vaccine strains. 


2021 ◽  
Author(s):  
Ryuichi Takemoto ◽  
Tateki Suzuki ◽  
Takao Hashiguchi ◽  
Yusuke Yanagi ◽  
Yuta Shirogane

Measles virus (MeV), an enveloped RNA virus in the family Paramyxoviridae , usually causes acute febrile illness with skin rash, but in rare cases persists in the brain, causing a progressive neurological disorder, subacute sclerosing panencephalitis (SSPE). MeV bears two envelope glycoproteins, the hemagglutinin (H) and fusion (F) proteins. The H protein possesses a head domain that initially mediates receptor binding and a stalk domain that subsequently transmits the fusion-triggering signal to the F protein. We have recently shown that cell adhesion molecule 1 (CADM1, also known as IGSF4A, Necl-2, SynCAM1) and CADM2 (also known as IGSF4D, Necl-3, SynCAM2) are host factors enabling cell-cell membrane fusion mediated by hyperfusogenic F proteins of neuropathogenic MeVs as well as MeV spread between neurons lacking the known receptors. CADM1 and CADM2 interact in cis with the H protein on the same cell membrane, triggering hyperfusogenic F protein-mediated membrane fusion. Multiple isoforms of CADM1 and CADM2 containing various lengths of their stalk regions are generated by alternative splicing. Here we show that only short-stalk isoforms of CADM1 and CADM2 predominantly expressed in the brain induce hyperfusogenic F protein-mediated membrane fusion. While the known receptors interact in trans with the H protein through its head domain, these isoforms can interact in cis even with the H protein lacking the head domain and trigger membrane fusion, presumably through its stalk domain. Thus, our results unveil a new mechanism of viral fusion triggering by host factors. Importance Measles, an acute febrile illness with skin rash, is still an important cause of childhood morbidity and mortality worldwide. Measles virus (MeV), the causative agent of measles, may also cause a progressive neurological disorder, subacute sclerosing panencephalitis (SSPE), several years after acute infection. The disease is fatal, and no effective therapy is available. Recently, we have reported that cell adhesion molecule 1 (CADM1) and CADM2 are host factors enabling MeV cell-to-cell spread in neurons. These molecules interact in cis with the MeV attachment protein on the same cell membrane, triggering the fusion protein and causing membrane fusion. CADM1 and CADM2 are known to exist in multiple splice isoforms. In this study, we report that their short-stalk isoforms can induce membrane fusion by interacting in cis with the viral attachment protein independently of its receptor-binding head domain. This finding may have important implications for cis -acting fusion triggering by host factors.


1999 ◽  
Vol 6 (2) ◽  
pp. 178-180 ◽  
Author(s):  
Rita F. Helfand ◽  
Senait Kebede ◽  
Howard E. Gary ◽  
Hagos Beyene ◽  
William J. Bellini

ABSTRACT A standard method for diagnosing measles is to detect measles-specific immunoglobulin M (IgM) in the serum of infected persons. Interpreting a positive IgM result from a person with suspected measles can be difficult if the person has recently received a measles vaccine. We have previously demonstrated that measles-specific IgM may persist for at least 8 weeks after primary vaccination, but it is unknown how quickly IgM appears. This study determined the timing of the rise of measles-specific IgM and IgG after primary measles vaccination with Schwartz vaccine. Two hundred eighty 9-month-old children from Ethiopia presenting for routine measles vaccination were enrolled. Sera were collected before and either 1, 2, 3, or 4 weeks after vaccination and tested for measles-specific antibodies by an IgM capture enzyme immunoassay (EIA) and by an indirect IgG EIA. A total of 209 of the 224 children who returned for the second visit had prevaccination sera that were both IgM and IgG negative. The postvaccination IgM positivity rates for these 209 children were 2% at 1 week, 61% at 2 weeks, 79% at 3 weeks, and 60% at 4 weeks. The postvaccination IgG positivity rates were 0% at 1 week, 14% at 2 weeks, 81% at 3 weeks, and 85% at 4 weeks. We conclude that an IgM-positive result obtained by this antibody capture EIA is difficult to interpret if serum is collected between 8 days and 8 weeks after vaccination; in this situation, the diagnosis of measles should be based on an epidemiologic linkage to a confirmed case or on the detection of wild-type measles virus.


Sign in / Sign up

Export Citation Format

Share Document