scholarly journals PrP-specific camel antibodies with the ability to immunodetect intracellular prion protein

2010 ◽  
Vol 91 (8) ◽  
pp. 2121-2131 ◽  
Author(s):  
Mourad Tayebi ◽  
William Alexander Taylor ◽  
Daryl Rhys Jones ◽  
Clive Bate ◽  
Monique David

Although there is currently no effective treatment for prion diseases, significant advances have been made in suppressing its progress, using antibodies that block the conversion of PrPC into PrPSc. In order to be effective in treating individuals that have prion diseases, antibodies must be capable of arresting disease in its late stages. This requires the development of antibodies with higher affinity for PrPSc and systems for effective translocation of antibodies across the blood–brain barrier in order to achieve high concentrations of inhibitor at the site of protein replication. An additional advantage is the ability of these antibodies to access the cytosol of affected cells. To this end, we have generated PrP-specific antibodies (known as PrioV) by immunization of camels with murine scrapie material adsorbed to immunomagnetic beads. The PrioV antibodies display a range of specificities with some recognizing the PrP27–30 proteinase K-resistant fragment, others specific for PrPC and a number with dual binding specificity. Independent of their PrP conformation specificity, one of the PrioV antibodies (PrioV3) was shown to bind PrPC in the cytosol of neuroblastoma cells. In marked contrast, conventional anti-PrP antibodies produced in mouse against similar target antigen were unable to cross the neuronal plasma membrane and instead formed a ring around the cells. The PrioV anti-PrP antibodies could prove to be a valuable tool for the neutralization/clearance of PrPSc in intracellular compartments of affected neurons and could potentially have wider applicability for the treatment of so-called protein-misfolding diseases.

Pathogens ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 24
Author(s):  
Akikazu Sakudo ◽  
Daiki Anraku ◽  
Tomomasa Itarashiki

Prion diseases are proteopathies that cause neurodegenerative disorders in humans and animals. Prion is highly resistant to both chemical and physical inactivation. Here, vaporized gas derived from a hydrogen peroxide–peracetic acid mixture (VHPPA) was evaluated for its ability to inactivate prion using a STERIACE 100 instrument (Saraya Co., Ltd.). Brain homogenates of scrapie (Chandler strain) prion-infected mice were placed on a cover glass, air-dried, sealed in a Tyvek package, and subjected to VHPPA treatment at 50–55 °C using 8% hydrogen peroxide and <10% peracetic acid for 47 min (standard mode, SD) or 30 min (quick mode, QC). Untreated control samples were prepared in the same way but without VHPPA. The resulting samples were treated with proteinase K (PK) to separate PK-resistant prion protein (PrPres), as a marker of the abnormal isoform (PrPSc). Immunoblotting showed that PrPres was reduced by both SD and QC VHPPA treatments. PrPres bands were detected after protein misfolding cyclic amplification of control but not VHPPA-treated samples. In mice injected with prion samples, VHPPA treatment of prion significantly prolonged survival relative to untreated samples, suggesting that it decreases prion infectivity. Taken together, the results show that VHPPA inactivates prions and might be applied to the sterilization of contaminated heat-sensitive medical devices.


mBio ◽  
2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Christina D. Orrú ◽  
Bradley R. Groveman ◽  
Andrew G. Hughson ◽  
Gianluigi Zanusso ◽  
Michael B. Coulthart ◽  
...  

ABSTRACT  Fast, definitive diagnosis of Creutzfeldt-Jakob disease (CJD) is important in assessing patient care options and transmission risks. Real-time quaking-induced conversion (RT-QuIC) assays of cerebrospinal fluid (CSF) and nasal-brushing specimens are valuable in distinguishing CJD from non-CJD conditions but have required 2.5 to 5 days. Here, an improved RT-QuIC assay is described which identified positive CSF samples within 4 to 14 h with better analytical sensitivity. Moreover, analysis of 11 CJD patients demonstrated that while 7 were RT-QuIC positive using the previous conditions, 10 were positive using the new assay. In these and further analyses, a total of 46 of 48 CSF samples from sporadic CJD patients were positive, while all 39 non-CJD patients were negative, giving 95.8% diagnostic sensitivity and 100% specificity. This second-generation RT-QuIC assay markedly improved the speed and sensitivity of detecting prion seeds in CSF specimens from CJD patients. This should enhance prospects for rapid and accurate ante mortem CJD diagnosis. IMPORTANCE A long-standing problem in dealing with various neurodegenerative protein misfolding diseases is early and accurate diagnosis. This issue is particularly important with human prion diseases, such as CJD, because prions are deadly, transmissible, and unusually resistant to decontamination. The recently developed RT-QuIC test allows for highly sensitive and specific detection of CJD in human cerebrospinal fluid and is being broadly implemented as a key diagnostic tool. However, as currently applied, RT-QuIC takes 2.5 to 5 days and misses 11 to 23% of CJD cases. Now, we have markedly improved RT-QuIC analysis of human CSF such that CJD and non-CJD patients can be discriminated in a matter of hours rather than days with enhanced sensitivity. These improvements should allow for much faster, more accurate, and practical testing for CJD. In broader terms, our study provides a prototype for tests for misfolded protein aggregates that cause many important amyloid diseases, such as Alzheimer’s, Parkinson’s, and tauopathies.


2018 ◽  
Vol 76 (10) ◽  
pp. 705-712
Author(s):  
Pedro Piccardo ◽  
David M. Asher

ABSTRACT Protein misfolding diseases are usually associated with deposits of single “key” proteins that somehow drive the pathology; β-amyloid and hyperphosphorylated tau accumulate in Alzheimer's disease, α-synuclein in Parkinson's disease, or abnormal prion protein (PrPTSE) in transmissible spongiform encephalopathies (TSEs or prion diseases). However, in some diseases more than two proteins accumulate in the same brain. These diseases might be considered “complex” proteinopathies. We have studied models of TSEs (to explore deposits of PrPTSE and of “secondary proteins”) infecting different strains and doses of TSE agent, factors that control incubation period, duration of illness and histopathology. Model TSEs allowed us to investigate whether different features of histopathology are independent of PrPTSE or appear as a secondary result of PrPTSE. Better understanding the complex proteinopathies may help to explain the wide spectrum of degenerative diseases and why some overlap clinically and histopathologically. These studies might also improve diagnosis and eventually even suggest new treatments for human neurodegenerative diseases.


2006 ◽  
Vol 17 (8) ◽  
pp. 3356-3368 ◽  
Author(s):  
Angelika S. Rambold ◽  
Margit Miesbauer ◽  
Doron Rapaport ◽  
Till Bartke ◽  
Michael Baier ◽  
...  

Protein misfolding is linked to different neurodegenerative disorders like Alzheimer’s disease, polyglutamine, and prion diseases. We investigated the cytotoxic effects of aberrant conformers of the prion protein (PrP) and show that toxicity is specifically linked to misfolding of PrP in the cytosolic compartment and involves binding of PrP to the anti-apoptotic protein Bcl-2. PrP targeted to different cellular compartments, including the cytosol, nucleus, and mitochondria, adopted a misfolded and partially proteinase K–resistant conformation. However, only in the cytosol did the accumulation of misfolded PrP induce apoptosis. Apoptotic cell death was also induced by two pathogenic mutants of PrP, which are partially localized in the cytosol. A mechanistic analysis revealed that the toxic potential is linked to an internal domain of PrP (amino acids 115–156) and involves coaggregation of cytosolic PrP with Bcl-2. Increased expression of the chaperones Hsp70 and Hsp40 prevented the formation of PrP/Bcl-2 coaggregates and interfered with PrP-induced apoptosis. Our study reveals a compartment-specific toxicity of PrP misfolding that involves coaggregation of Bcl-2 and indicates a protective role of molecular chaperones.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hideyuki Hara ◽  
Junji Chida ◽  
Keiji Uchiyama ◽  
Agriani Dini Pasiana ◽  
Etsuhisa Takahashi ◽  
...  

AbstractMisfolding of the cellular prion protein, PrPC, into the amyloidogenic isoform, PrPSc, which forms infectious protein aggregates, the so-called prions, is a key pathogenic event in prion diseases. No pathogens other than prions have been identified to induce misfolding of PrPC into PrPSc and propagate infectious prions in infected cells. Here, we found that infection with a neurotropic influenza A virus strain (IAV/WSN) caused misfolding of PrPC into PrPSc and generated infectious prions in mouse neuroblastoma cells through a hit-and-run mechanism. The structural and biochemical characteristics of IAV/WSN-induced PrPSc were different from those of RML and 22L laboratory prions-evoked PrPSc, and the pathogenicity of IAV/WSN-induced prions were also different from that of RML and 22L prions, suggesting IAV/WSN-specific formation of PrPSc and infectious prions. Our current results may open a new avenue for the role of viral infection in misfolding of PrPC into PrPSc and formation of infectious prions.


2021 ◽  
Vol 22 (13) ◽  
pp. 6822
Author(s):  
Óscar López-Pérez ◽  
David Sanz-Rubio ◽  
Adelaida Hernaiz ◽  
Marina Betancor ◽  
Alicia Otero ◽  
...  

Diagnosis of transmissible spongiform encephalopathies (TSEs), or prion diseases, is based on the detection of proteinase K (PK)-resistant PrPSc in post-mortem tissues as indication of infection and disease. Since PrPSc detection is not considered a reliable method for in vivo diagnosis in most TSEs, it is of crucial importance to identify an alternative source of biomarkers to provide useful alternatives for current diagnostic methodology. Ovine scrapie is the prototype of TSEs and has been known for a long time. Using this natural model of TSE, we investigated the presence of PrPSc in exosomes derived from plasma and cerebrospinal fluid (CSF) by protein misfolding cyclic amplification (PMCA) and the levels of candidate microRNAs (miRNAs) by quantitative PCR (qPCR). Significant scrapie-associated increase was found for miR-21-5p in plasma-derived but not in CSF-derived exosomes. However, miR-342-3p, miR-146a-5p, miR-128-3p and miR-21-5p displayed higher levels in total CSF from scrapie-infected sheep. The analysis of overexpressed miRNAs in this biofluid, together with plasma exosomal miR-21-5p, could help in scrapie diagnosis once the presence of the disease is suspected. In addition, we found the presence of PrPSc in most CSF-derived exosomes from clinically affected sheep, which may facilitate in vivo diagnosis of prion diseases, at least during the clinical stage.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Ryan Limbocker ◽  
Benedetta Mannini ◽  
Francesco S. Ruggeri ◽  
Roberta Cascella ◽  
Catherine K. Xu ◽  
...  

AbstractThe onset and progression of numerous protein misfolding diseases are associated with the presence of oligomers formed during the aberrant aggregation of several different proteins, including amyloid-β (Aβ) in Alzheimer’s disease and α-synuclein (αS) in Parkinson’s disease. These small, soluble aggregates are currently major targets for drug discovery. In this study, we show that trodusquemine, a naturally-occurring aminosterol, markedly reduces the cytotoxicity of αS, Aβ and HypF-N oligomers to human neuroblastoma cells by displacing the oligomers from cell membranes in the absence of any substantial morphological and structural changes to the oligomers. These results indicate that the reduced toxicity results from a mechanism that is common to oligomers from different proteins, shed light on the origin of the toxicity of the most deleterious species associated with protein aggregation and suggest that aminosterols have the therapeutically-relevant potential to protect cells from the oligomer-induced cytotoxicity associated with numerous protein misfolding diseases.


Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1305
Author(s):  
Cristóbal Marrero-Winkens ◽  
Charu Sankaran ◽  
Hermann Schätzl

Many devastating neurodegenerative diseases are driven by the misfolding of normal proteins into a pathogenic abnormal conformation. Examples of such protein misfolding diseases include Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and prion diseases. The misfolded proteins involved in these diseases form self-templating oligomeric assemblies that recruit further correctly folded protein and induce their conversion. Over time, this leads to the formation of high molecular and mostly fibrillar aggregates that are increasingly inefficient at converting normal protein. Evidence from a multitude of in vitro models suggests that fibrils are fragmented to form new seeds, which can convert further normal protein and also spread to neighboring cells as observed in vivo. While fragmentation and seed generation were suggested as crucial steps in aggregate formation decades ago, the biological pathways involved remain largely unknown. Here, we show that mechanisms of aggregate clearance—namely the mammalian Hsp70–Hsp40–Hsp110 tri-chaperone system, macro-autophagy, and the proteasome system—may not only be protective, but also play a role in fragmentation. We further review the challenges that exist in determining the precise contribution of these mechanisms to protein misfolding diseases and suggest future directions to resolve these issues.


2021 ◽  
Vol 9 (15) ◽  
pp. 3300-3316
Author(s):  
Yanxian Zhang ◽  
Mingzhen Zhang ◽  
Yonglan Liu ◽  
Dong Zhang ◽  
Yijing Tang ◽  
...  

In vitro cross-interactions between three different amyloid peptides of GNNQQNY, Aβ, and hIAPP demonstrate the pathological links between three different amyloid diseases of Alzheimer, type 2 diabetes, and Prion diseases.


2013 ◽  
Vol 2013 ◽  
pp. 1-19 ◽  
Author(s):  
Suzana Aulić ◽  
Maria Laura Bolognesi ◽  
Giuseppe Legname

Prion diseases are fatal neurodegenerative illnesses, which include Creutzfeldt-Jakob disease in humans and scrapie, chronic wasting disease, and bovine spongiform encephalopathy in animals. They are caused by unconventional infectious agents consisting primarily of misfolded, aggregated,β-sheet-rich isoforms, denoted prions, of the physiological cellular prion protein (PrPC). Many lines of evidence suggest that prions (PrPSc) act both as a template for this conversion and as a neurotoxic agent causing neuronal dysfunction and cell death. As such,PrPScmay be considered as both a neuropathological hallmark of the disease and a therapeutic target. Several diagnostic imaging probes have been developed to monitor cerebral amyloid lesions in patients with neurodegenerative disorders (such as Alzheimer’s disease, Parkinson’s disease, and prion disease). Examples of these probes are Congo red, thioflavin T, and their derivatives. We synthesized a series of styryl derivatives, denoted theranostics, and studied their therapeutic and/or diagnostic potentials. Here we review the salient traits of these small molecules that are able to detect and modulate aggregated forms of several proteins involved in protein misfolding diseases. We then highlight the importance of further studies for their practical implications in therapy and diagnostics.


Sign in / Sign up

Export Citation Format

Share Document