scholarly journals Sensitivity of protein misfolding cyclic amplification versus immunohistochemistry in ante-mortem detection of chronic wasting disease

2012 ◽  
Vol 93 (5) ◽  
pp. 1141-1150 ◽  
Author(s):  
Nicholas J. Haley ◽  
Candace K. Mathiason ◽  
Scott Carver ◽  
Glenn C. Telling ◽  
Mark D. Zabel ◽  
...  

As the only prion disease affecting free-ranging animals, ante-mortem identification of affected cervids has become paramount in understanding chronic wasting disease (CWD) pathogenesis, prevalence and control of horizontal or vertical transmission. To seek maximal sensitivity in ante-mortem detection of CWD infection, this study used paired tonsil biopsy samples collected at various time points from 48 CWD-exposed cervids to compare blinded serial protein misfolding cyclic amplification (sPMCA) with the assay long considered the ‘gold standard’ for CWD detection, immunohistochemistry (IHC). sPMCA-negative controls (34 % of the samples evaluated) included tissues from mock-inoculated animals and unspiked negative controls, all of which tested negative throughout the course of the study. It was found that sPMCA on tonsil biopsies detected CWD infection significantly earlier (2.78 months, 95 % confidence interval 2.40–3.15) than conventional IHC. Interestingly, a correlation was observed between early detection by sPMCA and host PRNP genotype. These findings demonstrate that in vitro-amplification assays provide enhanced sensitivity and advanced detection of CWD infection in the peripheral tissues of cervids, with a potential role for spike or substrate genotype in sPMCA amplification efficiency.

2007 ◽  
Vol 81 (17) ◽  
pp. 9605-9608 ◽  
Author(s):  
Timothy D. Kurt ◽  
Matthew R. Perrott ◽  
Carol J. Wilusz ◽  
Jeffrey Wilusz ◽  
Surachai Supattapone ◽  
...  

ABSTRACT Chronic wasting disease (CWD) of cervids is associated with conversion of the normal cervid prion protein, PrPC, to a protease-resistant conformer, PrPCWD. Here we report the use of both nondenaturing amplification and protein-misfolding cyclic amplification (PMCA) to amplify PrPCWD in vitro. Normal brains from deer, transgenic mice expressing cervid PrPC [Tg(cerPrP)1536 mice], and ferrets supported amplification. PMCA using normal Tg(cerPrP)1536 brains as the PrPC substrate produced >6.5 × 109-fold amplification after six rounds. Highly efficient in vitro amplification of PrPCWD is a significant step toward detection of PrPCWD in the body fluids or excreta of CWD-susceptible species.


PLoS ONE ◽  
2012 ◽  
Vol 7 (4) ◽  
pp. e35383 ◽  
Author(s):  
Chad J. Johnson ◽  
Judd M. Aiken ◽  
Debbie McKenzie ◽  
Michael D. Samuel ◽  
Joel A. Pedersen

2010 ◽  
Vol 84 (21) ◽  
pp. 11560-11562 ◽  
Author(s):  
Ben C. Maddison ◽  
Claire A. Baker ◽  
Linda A. Terry ◽  
Susan J. Bellworthy ◽  
Leigh Thorne ◽  
...  

ABSTRACT Ovine scrapie and cervine chronic wasting disease show considerable horizontal transmission. Here we report that a scrapie-affected sheep farm has a widespread environmental contamination with prions. Prions were amplified by protein-misfolding cyclic amplification (sPMCA) from seven of nine environmental swab samples taken, including those from metal, plastic, and wooden surfaces. Sheep had been removed from the areas from which the swabs were taken up to 20 days prior to sampling, indicating that prions persist for at least that long. These data implicate inanimate objects as environmental reservoirs for prion infectivity that are likely to contribute to facile disease transmission.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Zerui Wang ◽  
Kefeng Qin ◽  
Manuel V. Camacho ◽  
Ignazio Cali ◽  
Jue Yuan ◽  
...  

AbstractChronic wasting disease (CWD) is a cervid prion disease caused by the accumulation of an infectious misfolded conformer (PrPSc) of cellular prion protein (PrPC). It has been spreading rapidly in North America and also found in Asia and Europe. Although bovine spongiform encephalopathy (i.e. mad cow disease) is the only animal prion disease known to be zoonotic, the transmissibility of CWD to humans remains uncertain. Here we report the generation of the first CWD-derived infectious human PrPSc by elk CWD PrPSc-seeded conversion of PrPC in normal human brain homogenates using in vitro protein misfolding cyclic amplification (PMCA). Western blotting with human PrP selective antibody confirmed that the PMCA-generated protease-resistant PrPSc was derived from the human PrPC substrate. Two lines of humanized transgenic mice expressing human PrP with either Val or Met at the polymorphic codon 129 developed clinical prion disease following intracerebral inoculation with the PMCA-generated CWD-derived human PrPSc. Diseased mice exhibited distinct PrPSc patterns and neuropathological changes in the brain. Our study, using PMCA and animal bioassays, provides the first evidence that CWD PrPSc can cross the species barrier to convert human PrPC into infectious PrPSc that can produce bona fide prion disease when inoculated into humanized transgenic mice.


2018 ◽  
Vol 56 (9) ◽  
Author(s):  
Kristen A. Davenport ◽  
Clare E. Hoover ◽  
Nathaniel D. Denkers ◽  
Candace K. Mathiason ◽  
Edward A. Hoover

ABSTRACT Chronic wasting disease (CWD), a fatal neurodegenerative prion disease of cervids, has spread across North America and has been detected in The Republic of Korea, Finland, and Norway. CWD appears to spread by horizontal transmission, and prions shed in saliva, feces, and urine are thought to contribute. However, studies investigating the rapid spread of CWD have been hampered by assay inhibitors and a lack of consistent and sensitive means to detect the relatively low levels of prions in these samples. Here we show that saliva frequently contains an inhibitor of the real-time quaking-induced conversion assay (RT-QuIC) and that the inhibitor is a member of the mucin family. To circumvent the inhibitor, we developed a modified protein misfolding cyclic amplification (PMCA) method to amplify CWD prions in saliva that were undetectable or ambiguous by RT-QuIC. Our results reinforce the impact of saliva in horizontal CWD transmission and highlight the importance of detection optimization.


Author(s):  
Nicholas J. Haley ◽  
Juergen A. Richt

Since chronic wasting disease (CWD) was first identified nearly 50 years ago in a captive mule deer herd in the Rocky Mountains of the United States, it has slowly spread across North America through the natural and anthropogenic movement of cervids and their carcasses.  As the endemic areas have expanded, so has the need for rapid, sensitive, and cost effective diagnostic tests – especially those which take advantage of samples collected antemortem.  Over the past two decades, strategies have evolved from the recognition of microscopic spongiform pathology and associated immunohistochemical staining of the misfolded prion protein to enzyme-linked immunoassays capable of detecting the abnormal prion conformer in postmortem samples.  In a history that parallels the diagnosis of more conventional infectious agents, both qualitative and real-time amplification assays have recently been developed to detect minute quantities of misfolded prions in a range of biological and environmental samples.  With these more sensitive and semi-quantitative approaches has come a greater understanding of the pathogenesis and epidemiology of this disease in the native host.  Because the molecular pathogenesis of prion protein misfolding is broadly analogous to the misfolding of other pathogenic proteins, including Aβ and α-synuclein, efforts are currently underway to apply these in vitro amplification techniques towards the diagnosis of Alzheimer’s disease, Parkinson’s disease, and other proteinopathies.   Chronic wasting disease – once a rare disease of Colorado mule deer – now represents one of the few naturally occurring protein misfolding disorders which might allow continued development and implementation of novel diagnostic strategies in an animal model.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maxime Bélondrade ◽  
Simon Nicot ◽  
Charly Mayran ◽  
Lilian Bruyere-Ostells ◽  
Florian Almela ◽  
...  

AbstractUnlike variant Creutzfeldt–Jakob disease prions, sporadic Creutzfeldt–Jakob disease prions have been shown to be difficult to amplify in vitro by protein misfolding cyclic amplification (PMCA). We assessed PMCA of pathological prion protein (PrPTSE) from 14 human sCJD brain samples in 3 substrates: 2 from transgenic mice expressing human prion protein (PrP) with either methionine (M) or valine (V) at position 129, and 1 from bank voles. Brain extracts representing the 5 major clinicopathological sCJD subtypes (MM1/MV1, MM2, MV2, VV1, and VV2) all triggered seeded PrPTSE amplification during serial PMCA with strong seed- and substrate-dependence. Remarkably, bank vole PrP substrate allowed the propagation of all sCJD subtypes with preservation of the initial molecular PrPTSE type. In contrast, PMCA in human PrP substrates was accompanied by a PrPTSE molecular shift during heterologous (M/V129) PMCA reactions, with increased permissiveness of V129 PrP substrate to in vitro sCJD prion amplification compared to M129 PrP substrate. Combining PMCA amplification sensitivities with PrPTSE electrophoretic profiles obtained in the different substrates confirmed the classification of 4 distinct major sCJD prion strains (M1, M2, V1, and V2). Finally, the level of sensitivity required to detect VV2 sCJD prions in cerebrospinal fluid was achieved.


2018 ◽  
Vol 92 (8) ◽  
Author(s):  
Qi Yuan ◽  
Glenn Telling ◽  
Shannon L. Bartelt-Hunt ◽  
Jason C. Bartz

ABSTRACTChronic wasting disease (CWD) is an emerging prion disease in North America. Recent identification of CWD in wild cervids from Norway raises the concern of the spread of CWD in Europe. CWD infectivity can enter the environment through live animal excreta and carcasses where it can bind to soil. Well-characterized hamster prion strains and CWD field isolates in unadsorbed or soil-adsorbed forms that were either hydrated or dehydrated were subjected to repeated rounds of freezing and thawing. We found that 500 cycles of repeated freezing and thawing of hydrated samples significantly decreased the abundance of PrPScand reduced protein misfolding cyclic amplification (PMCA) seeding activity that could be rescued by binding to soil. Importantly, dehydration prior to freezing and thawing treatment largely protected PrPScfrom degradation, and the samples maintained PMCA seeding activity. We hypothesize that redistribution of water molecules during the freezing and thawing process alters the stability of PrPScaggregates. Overall, these results have significant implications for the assessment of prion persistence in the environment.IMPORTANCEPrions excreted into the environment by infected animals, such as elk and deer infected with chronic wasting disease, persist for years and thus facilitate horizontal transmission of the disease. Understanding the fate of prions in the environment is essential to control prion disease transmission. The significance of our study is that it provides information on the possibility of prion degradation and inactivation under natural weathering processes. This information is significant for remediation of prion-contaminated environments and development of prion disease control strategies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Belén Marín ◽  
Alicia Otero ◽  
Séverine Lugan ◽  
Juan Carlos Espinosa ◽  
Alba Marín-Moreno ◽  
...  

AbstractPigs are susceptible to infection with the classical bovine spongiform encephalopathy (C-BSE) agent following experimental inoculation, and PrPSc accumulation was detected in porcine tissues after the inoculation of certain scrapie and chronic wasting disease isolates. However, a robust transmission barrier has been described in this species and, although they were exposed to C-BSE agent in many European countries, no cases of natural transmissible spongiform encephalopathies (TSE) infections have been reported in pigs. Transmission of atypical scrapie to bovinized mice resulted in the emergence of C-BSE prions. Here, we conducted a study to determine if pigs are susceptible to atypical scrapie. To this end, 12, 8–9-month-old minipigs were intracerebrally inoculated with two atypical scrapie sources. Animals were euthanized between 22- and 72-months post inoculation without clinical signs of TSE. All pigs tested negative for PrPSc accumulation by enzyme immunoassay, immunohistochemistry, western blotting and bioassay in porcine PrP mice. Surprisingly, in vitro protein misfolding cyclic amplification demonstrated the presence of C-BSE prions in different brain areas from seven pigs inoculated with both atypical scrapie isolates. Our results suggest that pigs exposed to atypical scrapie prions could become a reservoir for C-BSE and corroborate that C-BSE prions emerge during interspecies passage of atypical scrapie.


Sign in / Sign up

Export Citation Format

Share Document