scholarly journals Characterization of an enhanced antigenic change in the pandemic 2009 H1N1 influenza virus haemagglutinin

2014 ◽  
Vol 95 (5) ◽  
pp. 1033-1042 ◽  
Author(s):  
Blanca García-Barreno ◽  
Teresa Delgado ◽  
Sonia Benito ◽  
Inmaculada Casas ◽  
Francisco Pozo ◽  
...  

Murine hybridomas producing neutralizing mAbs specific to the pandemic influenza virus A/California/07/2009 haemagglutinin (HA) were isolated. These antibodies recognized at least two different but overlapping new epitopes that were conserved in the HA of most Spanish pandemic isolates. However, one of these isolates (A/Extremadura/RR6530/2010) lacked reactivity with the mAbs and carried two unique mutations in the HA head (S88Y and K136N) that were required simultaneously to eliminate reactivity with the murine antibodies. This unusual requirement directly illustrates the phenomenon of enhanced antigenic change proposed previously for the accumulation of simultaneous amino acid substitutions at antigenic sites of the influenza A virus HA during virus evolution (Shih et al., Proc Natl Acad Sci USA, 104 , 6283–6288, 2007). The changes found in the A/Extremadura/RR6530/2010 HA were not found in escape mutants selected in vitro with one of the mAbs, which contained instead nearby single amino acid changes in the HA head. Thus, either single or double point mutations may similarly alter epitopes of the new antigenic site identified in this work in the 2009 H1N1 pandemic virus HA. Moreover, this site is relevant for the human antibody response, as shown by competition of mAbs and human post-infection sera for virus binding. The results are discussed in the context of the HA antigenic structure and challenges posed for identification of sequence changes with possible antigenic impact during virus surveillance.

1978 ◽  
Vol 148 (2) ◽  
pp. 383-392 ◽  
Author(s):  
W Gerhard ◽  
RG Webster

Antigenic variants of A/PR/8/34 [HON1] influenza virus were selected after a single passage of the parent virus in embryonated chicken eggs in the presence of monoclonal antibodies to this virus. The monoclonal antibodies were produced by a hybridoma and were specific for an antigenic determinant on the HA molecule of the parent virus. Seven antigenic variants were analyzed with 95 monoclonal anti-HA antibodies prepared in vitro in the splenic fragment culture system. Three subgroups of antigenic variants were distinguished. The antigenic changes were primarily recognized by monoclonal antibodies to the strain- specific determinants of the parental hemagglutinin (HA) molecule. Monoclonal antibodies to HA determinants shared (in an identical or cross-reactive form) by parental virus and more than three heterologous viruses of the HON1 and H1N1 subtypes were unable to recognize the antigenic change on the variants. Similarly, heterogeneous antibody preparations could not differentiate between parental and variant viruses. The results are compatible with the idea that the HA of PR8 has available a large repertoire of antigenic modifications that may result from single amino acid substitutions, and that antigenic changes can occur in the strain- specific determinants on the HA molecule in the absence of concomitant changes in the cross-reactive HA determinants. The findings suggest that antigenic drift, in order to be epidemiologically significant, probably requires a series of amino acid substitutions in, or close to, the antigenic area on the HA molecule.


Viruses ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 203
Author(s):  
Hien Thi Tuong ◽  
Ngoc Minh Nguyen ◽  
Haan Woo Sung ◽  
Hyun Park ◽  
Seon-Ju Yeo

In July 2018, a novel avian influenza virus (A/Mandarin duck/South Korea/KNU18-12/2018(H11N9)) was isolated from Mandarin ducks in South Korea. Phylogenetic and molecular analyses were conducted to characterize the genetic origins of the H11N9 strain. Phylogenetic analysis indicated that eight gene segments of strain H11N9 belonged to the Eurasian lineages. Analysis of nucleotide sequence similarity of both the hemagglutinin (HA) and neuraminidase (NA) genes revealed the highest homology with A/duck/Kagoshima/KU57/2014 (H11N9), showing 97.70% and 98.00% nucleotide identities, respectively. Additionally, internal genes showed homology higher than 98% compared to those of other isolates derived from duck and wild birds. Both the polymerase acidic (PA) and polymerase basic 1 (PB1) genes were close to the H5N3 strain isolated in China; whereas, other internal genes were closely related to that of avian influenza virus in Japan. A single basic amino acid at the HA cleavage site (PAIASR↓GLF), the lack of a five-amino acid deletion (residue 69–73) in the stalk region of the NA gene, and E627 in the polymerase basic 2 (PB2) gene indicated that the A/Mandarin duck/South Korea/KNU18-12/2018(H11N9) isolate was a typical low-pathogenicity avian influenza. In vitro viral replication of H11N9 showed a lower titer than H1N1 and higher than H9N2. In mice, H11N9 showed lower adaptation than H1N1. The novel A/Mandarin duck/South Korea/KNU18-12/2018(H11N9) isolate may have resulted from an unknown reassortment through the import of multiple wild birds in Japan and Korea in approximately 2016–2017, evolving to produce a different H11N9 compared to the previous H11N9 in Korea (2016). Further reassortment events of this virus occurred in PB1 and PA in China-derived strains. These results indicate that Japanese- and Chinese-derived avian influenza contributes to the genetic diversity of A/Mandarin duck/South Korea/KNU18-12/2018(H11N9) in Korea.


2000 ◽  
Vol 44 (8) ◽  
pp. 2100-2108 ◽  
Author(s):  
Michael Korsinczky ◽  
Nanhua Chen ◽  
Barbara Kotecka ◽  
Allan Saul ◽  
Karl Rieckmann ◽  
...  

ABSTRACT Atovaquone is the major active component of the new antimalarial drug Malarone. Considerable evidence suggests that malaria parasites become resistant to atovaquone quickly if atovaquone is used as a sole agent. The mechanism by which the parasite develops resistance to atovaquone is not yet fully understood. Atovaquone has been shown to inhibit the cytochrome bc 1 (CYTbc 1) complex of the electron transport chain of malaria parasites. Here we report point mutations in Plasmodium falciparum CYT b that are associated with atovaquone resistance. Single or double amino acid mutations were detected from parasites that originated from a cloned line and survived various concentrations of atovaquone in vitro. A single amino acid mutation was detected in parasites isolated from a recrudescent patient following atovaquone treatment. These mutations are associated with a 25- to 9,354-fold range reduction in parasite susceptibility to atovaquone. Molecular modeling showed that amino acid mutations associated with atovaquone resistance are clustered around a putative atovaquone-binding site. Mutations in these positions are consistent with a reduced binding affinity of atovaquone for malaria parasite CYTb.


2003 ◽  
Vol 77 (18) ◽  
pp. 10088-10098 ◽  
Author(s):  
Katsuhisa Nakajima ◽  
Eri Nobusawa ◽  
Ken Tonegawa ◽  
Setsuko Nakajima

ABSTRACT We introduced 248 single-point amino acid changes into hemagglutinin (HA) protein of the A/Aichi/2/68 (H3N2) strain by a PCR random mutation method. These changes were classified as positive or negative according to their effect on hemadsorption activity. We observed following results. (i) The percentage of surviving amino acid changes on the HA1 domain that did not abrogate hemadsorption activity was calculated to be ca. 44%. In nature, it is estimated to be ca. 39.6%. This difference in surviving amino acid changes on the HA protein between natural isolates and in vitro mutants might be due to the immune pressure against the former. (ii) A total of 26 amino acid changes in the in vitro mutants matched those at which mainstream amino acid changes had occurred in the H3HA1 polypeptide from 1968 to 2000. Of these, 25 were positive. We suggest that the majority of amino acid changes on the HA protein during evolution might be restricted to those that were positive on the HA of A/Aichi/2/68. (iii) We constructed two-point amino acid changes on the HA protein by using positive mutants. These two-point amino acid changes with a random combination did not inhibit hemadsorption activity. It is possible that an accumulation of amino acid change might occur without order. (iv) From the analysis of amino acids participating in mainstream amino acid change, each antigenic site could be further divided into smaller sites. The amino acid substitutions in the gaps between these smaller sites resulted in mostly hemadsorption-negative changes. These gap positions may play an important role in maintaining the function of the HA protein, and therefore amino acid changes are restricted at these locations.


2021 ◽  
Author(s):  
Xuesheng Wu ◽  
Zhetao Zheng ◽  
Hongmin Chen ◽  
Haishuang Lin ◽  
Yuelin Yang ◽  
...  

AbstractThe frequent emergence of drug resistance during the treatment of influenza A virus (IAV) infections highlights a need for effective antiviral countermeasures. Here, we present an antiviral method that utilizes unnatural amino acid-engineered drug-resistant (UAA-DR) virus. The engineered virus is generated through genetic code expansion to combat emerging drug-resistant viruses. The UAA-DR virus has unnatural amino acids incorporated into its drug-resistant protein and its polymerase complex for replication control. The engineered virus can undergo genomic segment reassortment with normal virus and produce sterilized progenies due to artificial amber codons in the viral genome. We validate in vitro that UAA-DR can provide a broad-spectrum antiviral strategy for several H1N1 strains, different DR-IAV strains, multidrug-resistant (MDR) strains, and even antigenically distant influenza strains (e.g., H3N2). Moreover, a minimum dose of neuraminidase (NA) inhibitors for influenza virus can further enhance the sterilizing effect when combating inhibitor-resistant strains, partly due to the promoted superinfection of unnatural amino acid-modified virus in cellular and animal models. We also exploited the engineered virus to achieve adjustable efficacy after external UAA administration, for mitigating DR virus infection on transgenic mice harboring the pair, and to have substantial elements of the genetic code expansion technology, which further demonstrated the safety and feasibility of the strategy. We anticipate that the use of the UAA-engineered DR virion, which is a novel antiviral agent, could be extended to combat emerging drug-resistant influenza virus and other segmented RNA viruses.


1988 ◽  
Vol 8 (5) ◽  
pp. 1915-1922 ◽  
Author(s):  
D S Allison ◽  
E T Young

We used a genetic approach to identify point mutations in the signal sequence of a secreted eucaryotic protein, yeast alpha-factor. Signal sequence mutants were obtained by selecting for cells that partially mistargeted into mitochondria a fusion protein consisting of the alpha-factor signal sequence fused to the mature portion of an imported mitochondrial protein (Cox IV). The mutations resulted in replacement of a residue in the hydrophobic core of the signal sequence with either a hydrophilic amino acid or a proline. After reassembly into an intact alpha-factor gene, the substitutions were found to decrease up to 50-fold the rate of translocation of prepro-alpha-factor across microsomal membranes in vitro. Two of three mutants tested produced lower steady-state levels of alpha-factor in intact yeast cells, although the magnitude of the effect was less than that in the cell-free system.


2004 ◽  
Vol 823 ◽  
Author(s):  
Michael L. Paine ◽  
YaPing Lei ◽  
Wen Luo ◽  
Malcolm L. Snead

AbstractDental enamel is a unique composite bioceramic material that is the hardest tissue in the vertebrate body, containing long-, thin-crystallites of substituted hydroxyapatite. Enamel functions under immense loads in a bacterial-laden environment, and generally without catastrophic failure over a lifetime for the organism. Unlike all other biogenerated hard tissues of mesodermal origin, such as bone and dentin, enamel is produced by ectoderm-derived cells called ameloblasts. Recent investigations on the formation of enamel using cell and molecular approaches have been coupled to biomechanical investigations at the nanoscale and mesoscale levels. For amelogenin, the principle protein of forming enamel, two domains have been identified that are required for the proper assembly of multimeric units of amelogenin to form nanospheres. One domain is at the amino-terminus and the other domain in the carboxyl-terminal region. Amelogenin nanospheres are believed to influence the hydroxyapatite crystal habit. Both the yeast two-hybrid assay and surface plasmon resonance have been used to examine the assembly properties of engineered amelogenin proteins. Amelogenin protein was engineered using recombinant DNA techniques to contain deletions to either of the two self-assembly domains. Amelogenin protein was also engineered to contain single amino-acid mutations/substitutions in the amino-terminal self-assembly domain; and these amino-acid changes are based upon point mutations observed in humans affected with a hereditary disturbance of enamel formation. All of these alterations reveal significant defects in amelogenin self-assembly into nanospheres in vitro. Transgenic animals containing these same amelogenin deletions illustrate the importance of a physiologically correct bio-fabrication of the enamel protein extracellular matrix to allow for the organization of the enamel prismatic structure.


mBio ◽  
2018 ◽  
Vol 9 (2) ◽  
Author(s):  
Jeremy C. Jones ◽  
Gyanendra Kumar ◽  
Subrata Barman ◽  
Isabel Najera ◽  
Stephen W. White ◽  
...  

ABSTRACT The clinical severity and annual occurrence of influenza virus epidemics, combined with the availability of just a single class of antivirals to treat infections, underscores the urgent need to develop new anti-influenza drugs. The endonuclease activity within the viral acidic polymerase (PA) protein is an attractive target for drug discovery due to the critical role it plays in viral gene transcription. RO-7 is a next-generation PA endonuclease inhibitor of influenza A and B viruses, but its drug resistance potential is unknown. Through serial passage of influenza A(H1N1) viruses in MDCK cells under selective pressure of RO-7, we identified an I38T substitution within the PA endonuclease domain that conferred in vitro resistance to RO-7 (up to a 287-fold change in 50% effective concentration [EC 50 ]). I38T emerged between 5 and 10 passages, and when introduced into recombinant influenza A(H1N1) viruses, alone conferred RO-7 resistance (up to an 81-fold change in EC 50 ). Cocrystal structures of mutant and wild-type endonuclease domains with RO-7 provided the structural basis of resistance, where a key hydrophobic interaction between RO-7 and the Ile38 side chain is compromised when mutated to the polar threonine. While Ile38 does not have a crucial role in coordinating the endonuclease active site, the switch to threonine does affect the polymerase activity of some viruses and influences RO-7 affinity for the PA N target (i.e., the ≈200-residue N-terminal domain of PA). However, the change does not lead to a complete loss of replication activity in vitro . Our results predict that RO-7-resistant influenza viruses carrying the I38T substitution may emerge under treatment. This should be taken into consideration for clinical surveillance and in refinement of these drugs. IMPORTANCE The effectiveness of antiviral drugs can be severely compromised by the emergence of resistant viruses. Therefore, determination of the mechanisms by which viruses become resistant is critical for drug development and clinical use. RO-7 is a compound that potently inhibits influenza virus replication and belongs to a new class of drugs in late-stage clinical trials for treatment of influenza virus infection. Here we demonstrate that a single amino acid change acquired under prolonged virus exposure to RO-7 renders influenza viruses significantly less susceptible to its inhibitory effects. We have discovered how the mutation can simultaneously interfere with drug activity and still maintain efficient virus replication. These findings have important implications for the development of more effective derivatives of RO-7-like drugs and provide guidance for how to monitor the emergence of resistance.


2018 ◽  
Vol 92 (7) ◽  
Author(s):  
Teresa Aydillo ◽  
Juan Ayllon ◽  
Amzie Pavlisin ◽  
Carles Martinez-Romero ◽  
Shashank Tripathi ◽  
...  

ABSTRACTRecently, two new influenza A-like viruses have been discovered in bats, A/little yellow-shouldered bat/Guatemala/060/2010 (HL17NL10) and A/flat-faced bat/Peru/033/2010 (HL18NL11). The hemagglutinin (HA)-like (HL) and neuraminidase (NA)-like (NL) proteins of these viruses lack hemagglutination and neuraminidase activities, despite their sequence and structural homologies with the HA and NA proteins of conventional influenza A viruses. We have now investigated whether the NS1 proteins of the HL17NL10 and HL18NL11 viruses can functionally replace the NS1 protein of a conventional influenza A virus. For this purpose, we generated recombinant influenza A/Puerto Rico/8/1934 (PR8) H1N1 viruses containing the NS1 protein of the PR8 wild-type, HL17NL10, and HL18NL11 viruses. These viruses (r/NS1PR8, r/NS1HL17, and r/NS1HL18, respectively) were tested for replication in bat and nonbat mammalian cells and in mice. Our results demonstrate that the r/NS1HL17 and r/NS1HL18 viruses are attenuatedin vitroandin vivo. However, the bat NS1 recombinant viruses showed a phenotype similar to that of the r/NS1PR8 virus in STAT1−/−human A549 cells and mice, bothin vitroandin vivosystems being unable to respond to interferon (IFN). Interestingly, multiple mouse passages of the r/NS1HL17 and r/NS1HL18 viruses resulted in selection of mutant viruses containing single amino acid mutations in the viral PB2 protein. In contrast to the parental viruses, virulence and IFN antagonism were restored in the selected PB2 mutants. Our results indicate that the NS1 protein of bat influenza A-like viruses is less efficient than the NS1 protein of its conventional influenza A virus NS1 counterpart in antagonizing the IFN response and that this deficiency can be overcome by the influenza virus PB2 protein.IMPORTANCESignificant gaps in our understanding of the basic features of the recently discovered bat influenza A-like viruses HL17NL10 and HL18NL11 remain. The basic biology of these unique viruses displays both similarities to and differences from the basic biology of conventional influenza A viruses. Here, we show that recombinant influenza A viruses containing the NS1 protein from HL17NL10 and HL18NL11 are attenuated. This attenuation was mediated by their inability to antagonize the type I IFN response. However, this deficiency could be compensated for by single amino acid replacements in the PB2 gene. Our results unravel a functional divergence between the NS1 proteins of bat influenza A-like and conventional influenza A viruses and demonstrate an interplay between the viral PB2 and NS1 proteins to antagonize IFN.


Sign in / Sign up

Export Citation Format

Share Document