scholarly journals Cloning, characterization and analysis by RNA interference of various genes of the Chelonus inanitus polydnavirus

2005 ◽  
Vol 86 (4) ◽  
pp. 973-983 ◽  
Author(s):  
Marianne Bonvin ◽  
Dorothee Marti ◽  
Stefan Wyder ◽  
Dejan Kojic ◽  
Marc Annaheim ◽  
...  

Successful parasitism of some endoparasitic wasps depends on an obligately symbiotic association with polydnaviruses. These unique viruses have a segmented genome consisting of circles of double-stranded (ds) DNA and do not replicate in the parasitized host. They are produced in the wasp's ovary and injected into the host along with the egg. Chelonus inanitus is an egg–larval parasitoid; its polydnavirus (CiV) has been shown to protect the parasitoid larva from the host's immune system and to induce developmental arrest in the prepupal stage. The genome of CiV consists of at least 10–12 segments and five have been sequenced up to now. Here, the complete (CiV12g2) or partial (CiV12g1, CiV16.8g1) cloning of three new CiV genes is reported. All three occur only on one viral segment and have no similarity to other known polydnavirus genes, with the exception of a high similarity of CiV12g1 to CiV14g1 and CiV12g2 to CiV14g2. Furthermore, the first attempt of in vivo application of RNA interference to study the function of polydnavirus genes is shown. Injection of dsRNA of two late- and one early- and late-expressed CiV genes into CiV/venom-containing host eggs partially rescued last-instar larvae from developmental arrest. Injection of the same dsRNAs into parasitized eggs partially reduced parasitoid survival, mainly by preventing the successful emergence of the parasitoid from the host. These viral genes thus seem to be involved in inducing developmental arrest and in keeping the cuticle soft, which appears to be necessary for parasitoid emergence and host feeding.

Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2200
Author(s):  
Ruben X. G. Silva ◽  
Paulo Cartaxana ◽  
Ricardo Calado

Berghia stephanieae is a stenophagous sea slug that preys upon glass anemones, such as Exaiptasia diaphana. Glass anemones host photosynthetic dinoflagellate endosymbionts that sea slugs ingest when consuming E. diaphana. However, the prevalence of these photosynthetic dinoflagellate endosymbionts in sea slugs appears to be short-lived, particularly if B.stephanieae is deprived of prey that host these microalgae (e.g., during bleaching events impacting glass anemones). In the present study, we investigated this scenario, along with food deprivation, and validated the use of a non-invasive and non-destructive approach employing chlorophyll fluorescence as a proxy to monitor the persistence of the association between sea slugs and endosymbiotic photosynthetic dinoflagellates acquired through the consumption of glass anemones. Berghia stephanieae deprived of a trophic source hosting photosynthetic dinoflagellate endosymbionts (e.g., through food deprivation or by feeding on bleached E. diaphana) showed a rapid decrease in minimum fluorescence (Fo) and photosynthetic efficiency (Fv/Fm) when compared to sea slugs fed with symbiotic anemones. A complete loss of endosymbionts was observed within 8 days, confirming that no true symbiotic association was established. The present work opens a new window of opportunity to rapidly monitor in vivo and over time the prevalence of associations between sea slugs and photosynthetic dinoflagellate endosymbionts, particularly during bleaching events that prevent sea slugs from incorporating new microalgae through trophic interactions.


2009 ◽  
Vol 75 (5) ◽  
pp. 490-498 ◽  
Author(s):  
Genta Kanai ◽  
Takatoshi Kakuta ◽  
Kaichiro Sawada ◽  
Tun A. Yokoyama ◽  
Reika Tanaka ◽  
...  

2009 ◽  
Vol 7 (1) ◽  
pp. 73 ◽  
Author(s):  
Yi Li ◽  
Xiao-yan Liang ◽  
Li-na Wei ◽  
Yong-lao Xiong ◽  
Xing Yang ◽  
...  

2003 ◽  
Vol 77 (2) ◽  
pp. 1382-1391 ◽  
Author(s):  
Michiko Tanaka ◽  
Hiroyuki Kagawa ◽  
Yuji Yamanashi ◽  
Tetsutaro Sata ◽  
Yasushi Kawaguchi

ABSTRACT In recent years, several laboratories have reported on the cloning of herpes simplex virus type 1 (HSV-1) genomes as bacterial artificial chromosomes (BACs) in Escherichia coli and on procedures to manipulate these genomes by using the bacterial recombination machinery. However, the HSV-BACs reported so far are either replication incompetent or infectious, with a deletion of one or more viral genes due to the BAC vector insertion. For use as a multipurpose clone in research on HSV-1, we attempted to generate infectious HSV-BACs containing the full genome of HSV-1 without any loss of viral genes. Our results were as follows. (i) E. coli (YEbac102) harboring the full-length HSV-1 genome (pYEbac102) in which a BAC flanked by loxP sites was inserted into the intergenic region between UL3 and UL4 was constructed. (ii) pYEbac102 was an infectious molecular clone, given that its transfection into rabbit skin cells resulted in production of infectious virus (YK304). (iii) The BAC vector sequence was almost perfectly excisable from the genome of the reconstituted virus YK304 by coinfection of Vero cells with YK304 and a recombinant adenovirus, AxCANCre, expressing Cre recombinase. (iv) As far as was examined, the reconstituted viruses from pYEbac102 could not be phenotypically differentiated from wild-type viruses in vitro and in vivo. Thus, the viruses grew as well in Vero cells as did the wild-type virus and exhibited wild-type virulence in mice on intracerebral inoculation. (v) The infectious molecular clone pYEbac102 is in fact useful for mutagenesis of the HSV-1 genome by bacterial genetics, and a recombinant virus carrying amino acid substitutions in both copies of the α0 gene was generated. pYEbac102 will have multiple applications to the rapid generation of genetically engineered HSV-1 recombinants in basic research into HSV-1 and in the development of HSV vectors in human therapy.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 758-758
Author(s):  
◽  
Fatima Al-Shahrour ◽  
Kimberly A. Hartwell ◽  
Lisa P Chu ◽  
Jaras Marcus ◽  
...  

Abstract Abstract 758 Primary leukemia stem cells (LSCs) reside in an in vivo microenvironment that supports the growth and survival of malignant cells. Despite the increasing understanding of the importance of niche interactions and primary cell biology in leukemia, many studies continue to focus on cell autonomous processes in artificial model systems. The majority of strategies to-date that attempt to define therapeutic targets in leukemia have relied on screening cell lines in culture; new strategies should incorporate the use of primary disease within a physiologic niche. Using a primary murine MLL-AF9 acute myeloid leukemia (AML) model highly enriched for LSCs, we performed an in vivo short hairpin RNA (shRNA) screen to identify novel genes that are essential for leukemia growth and survival. LSCs infected with pools of shRNA lentivirus were transplanted and grown in recipient mice for 2 weeks, after which bone marrow and spleen cells were isolated. Massively parallel sequencing of infected LSCs isolated before and after transplant was used to quantify the changes in shRNA representation over time. Our in vivo screens were highly sensitive, robust, and reproducible and identified a number of positive controls including genes required for MLL-AF9 transformation (Ctnnb1, Mef2c, Ccna1), genes universally required for cell survival (Ube2j2, Utp18), and genes required in other AML models (Myb, Pbx1, Hmgb3). In our primary and validation screens, multiple shRNAs targeting Integrin Beta 3 (Itgb3) were consistently depleted by more than 20-fold over two weeks in vivo. Follow up studies using RNA interference (RNAi) and Itgb3−/− mice identified Itgb3 as essential for murine leukemia cells growth and transformation in vivo, and loss of Itgb3 conferred a statistically significant survival advantage to recipient mice. Importantly, neither Itgb3 knockdown or genetic loss impaired normal hematopoietic stem and progenitor cell (HSPC) function in 16 week multilineage reconstitution assays. We further identified Itgav as the heterodimeric partner of Itgb3 in our model, and found that knockdown of Itgav inhibited leukemia cell growth in vivo. Consistent the therapeutic aims or our study, flow cytometry on primary human AML samples revealed ITGAV/ITGB3 heterodimer expression. To functionally assess the importance of gene expression in a human system, we performed another RNAi screen on M9 leukemia cells, primary human cord blood CD34+ cells transduced with MLL-ENL that are capable of growing in vitro or in a xenotransplant model in vivo. We found that ITGB3 loss inhibited M9 cell growth in vivo, but not in vitro, consistent with the importance of ITGB3 in a physiologic microenvironment. We explored the signaling pathways downstream of Itgb3 using an additional in vivo, unbiased shRNA screen and identified Syk as a critical mediator of Itgb3 activity in leukemia. Syk knockdown by RNAi inhibited leukemia cell growth in vivo; downregulation of Itgb3 expression resulted in decreased levels of Syk phosphorylation; and expression of an activated form of Syk, TEL-SYK, rescued the effects of Itgb3 knockdown on leukemia cell growth in vivo. To understand cellular processes controlled by Itgb3, we performed gene expression studies and found that, in leukemia cells, Itgb3 knockdown induced differentiation and inhibited multiple previously published LSC transcriptional programs. We confirmed these results using primary leukemia cell histology and a model system of leukemia differentiation. Finally, addition of a small molecule Syk inhibitor, R406, to primary cells co-cultured with bone marrow stroma caused a dose-dependent decrease in leukemia cell growth. Our results establish the significance of the Itgb3 signaling pathway, including Syk, as a potential therapeutic target in AML, and demonstrate the utility of in vivo RNA interference screens. Disclosures: Armstrong: Epizyme: Consultancy.


Sign in / Sign up

Export Citation Format

Share Document