scholarly journals Purification and characterization of infectious myonecrosis virus of penaeid shrimp

2006 ◽  
Vol 87 (4) ◽  
pp. 987-996 ◽  
Author(s):  
Bonnie T. Poulos ◽  
Kathy F. J. Tang ◽  
Carlos R. Pantoja ◽  
Jean Robert Bonami ◽  
Donald V. Lightner

The causative agent of myonecrosis affecting cultured Penaeus vannamei in Brazil was demonstrated to be a virus after purification of the agent from infected shrimp tissues. Purified viral particles were injected into specific pathogen-free P. vannamei, resulting in a disease that displayed the same characteristics as those found in the original shrimp used for purification. The virus was named infectious myonecrosis virus (IMNV). The viral particles were icosahedral in shape and 40 nm in diameter, with a buoyant density of 1·366 g ml−1 in caesium chloride. The genome consisted of a single, double-stranded (dsRNA) molecule of 7560 bp. Sequencing of the viral genome revealed two non-overlapping open reading frames (ORFs). The 5′ ORF (ORF 1, nt 136–4953) encoded a putative RNA-binding protein and a capsid protein. The coding region of the RNA-binding protein was located in the first half of ORF 1 and contained a dsRNA-binding motif in the first 60 aa. The second half of ORF 1 encoded a capsid protein, as determined by amino acid sequencing, with a molecular mass of 106 kDa. The 3′ ORF (ORF 2, nt 5241–7451) encoded a putative RNA-dependent RNA polymerase (RdRp) with motifs characteristic of totiviruses. Phylogenetic analysis based on the RdRp clustered IMNV with Giardia lamblia virus, a member of the family Totiviridae. Based on these findings, IMNV may be a unique member of the Totiviridae or may represent a new dsRNA virus family that infects invertebrate hosts.

2016 ◽  
Vol 113 (31) ◽  
pp. E4494-E4503 ◽  
Author(s):  
Douglas M. Anderson ◽  
Jessica Cannavino ◽  
Hui Li ◽  
Kelly M. Anderson ◽  
Benjamin R. Nelson ◽  
...  

Innervation of skeletal muscle by motor neurons occurs through the neuromuscular junction, a cholinergic synapse essential for normal muscle growth and function. Defects in nerve–muscle signaling cause a variety of neuromuscular disorders with features of ataxia, paralysis, skeletal muscle wasting, and degeneration. Here we show that the nuclear zinc finger protein ZFP106 is highly enriched in skeletal muscle and is required for postnatal maintenance of myofiber innervation by motor neurons. Genetic disruption of Zfp106 in mice results in progressive ataxia and hindlimb paralysis associated with motor neuron degeneration, severe muscle wasting, and premature death by 6 mo of age. We show that ZFP106 is an RNA-binding protein that associates with the core splicing factor RNA binding motif protein 39 (RBM39) and localizes to nuclear speckles adjacent to spliceosomes. Upon inhibition of pre-mRNA synthesis, ZFP106 translocates with other splicing factors to the nucleolus. Muscle and spinal cord of Zfp106 knockout mice displayed a gene expression signature of neuromuscular degeneration. Strikingly, altered splicing of the Nogo (Rtn4) gene locus in skeletal muscle of Zfp106 knockout mice resulted in ectopic expression of NOGO-A, the neurite outgrowth factor that inhibits nerve regeneration and destabilizes neuromuscular junctions. These findings reveal a central role for Zfp106 in the maintenance of nerve–muscle signaling, and highlight the involvement of aberrant RNA processing in neuromuscular disease pathogenesis.


2006 ◽  
Vol 17 (1) ◽  
pp. 14-24 ◽  
Author(s):  
Maria Paola Paronetto ◽  
Francesca Zalfa ◽  
Flavia Botti ◽  
Raffaele Geremia ◽  
Claudia Bagni ◽  
...  

Translational control plays a crucial role during gametogenesis in organisms as different as worms and mammals. Mouse knockout models have highlighted the essential function of many RNA-binding proteins during spermatogenesis. Herein we have investigated the expression and function during mammalian male meiosis of Sam68, an RNA-binding protein implicated in several aspects of RNA metabolism. Sam68 expression and localization within the cells is stage specific: it is expressed in the nucleus of spermatogonia, it disappears at the onset of meiosis (leptotene/zygotene stages), and it accumulates again in the nucleus of pachytene spermatocytes and round spermatids. During the meiotic divisions, Sam68 translocates to the cytoplasm where it is found associated with the polysomes. Translocation correlates with serine/threonine phosphorylation and it is blocked by inhibitors of the mitogen activated protein kinases ERK1/2 and of the maturation promoting factor cyclinB-cdc2 complex. Both kinases associate with Sam68 in pachytene spermatocytes and phosphorylate the regulatory regions upstream and downstream of the Sam68 RNA-binding motif. Molecular cloning of the mRNAs associated with Sam68 in mouse spermatocytes reveals a subset of genes that might be posttranscriptionally regulated by this RNA-binding protein during spermatogenesis. We also demonstrate that Sam68 shuttles between the nucleus and the cytoplasm in secondary spermatocytes, suggesting that it may promote translation of specific RNA targets during the meiotic divisions.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Sakari Vanharanta ◽  
Christina B Marney ◽  
Weiping Shu ◽  
Manuel Valiente ◽  
Yilong Zou ◽  
...  

The mechanisms through which cancer cells lock in altered transcriptional programs in support of metastasis remain largely unknown. Through integrative analysis of clinical breast cancer gene expression datasets, cell line models of breast cancer progression, and mutation data from cancer genome resequencing studies, we identified RNA binding motif protein 47 (RBM47) as a suppressor of breast cancer progression and metastasis. RBM47 inhibited breast cancer re-initiation and growth in experimental models. Transcriptome-wide HITS-CLIP analysis revealed widespread RBM47 binding to mRNAs, most prominently in introns and 3′UTRs. RBM47 altered splicing and abundance of a subset of its target mRNAs. Some of the mRNAs stabilized by RBM47, as exemplified by dickkopf WNT signaling pathway inhibitor 1, inhibit tumor progression downstream of RBM47. Our work identifies RBM47 as an RNA-binding protein that can suppress breast cancer progression and demonstrates how the inactivation of a broadly targeted RNA chaperone enables selection of a pro-metastatic state.


2009 ◽  
Vol 83 (12) ◽  
pp. 6087-6097 ◽  
Author(s):  
Kortney M. Gustin ◽  
Bo-Jhih Guan ◽  
Agnieszka Dziduszko ◽  
David A. Brian

ABSTRACT Nonstructural protein 1 (nsp1), a 28-kDa protein in the bovine coronavirus (BCoV) and closely related mouse hepatitis coronavirus, is the first protein cleaved from the open reading frame 1 (ORF 1) polyprotein product of genome translation. Recently, a 30-nucleotide (nt) cis-replication stem-loop VI (SLVI) has been mapped at nt 101 to 130 within a 288-nt 5′-terminal segment of the 738-nt nsp1 cistron in a BCoV defective interfering (DI) RNA. Since a similar nsp1 coding region appears in all characterized groups 1 and 2 coronavirus DI RNAs and must be translated in cis for BCoV DI RNA replication, we hypothesized that nsp1 might regulate ORF 1 expression by binding this intra-nsp1 cistronic element. Here, we (i) establish by mutation analysis that the 72-nt intracistronic SLV immediately upstream of SLVI is also a DI RNA cis-replication signal, (ii) show by gel shift and UV-cross-linking analyses that cellular proteins of ∼60 and 100 kDa, but not viral proteins, bind SLV and SLVI, (SLV-VI) and (iii) demonstrate by gel shift analysis that nsp1 purified from Escherichia coli does not bind SLV-VI but does bind three 5′ untranslated region (UTR)- and one 3′ UTR-located cis-replication SLs. Notably, nsp1 specifically binds SLIII and its flanking sequences in the 5′ UTR with ∼2.5 μM affinity. Additionally, under conditions enabling expression of nsp1 from DI RNA-encoded subgenomic mRNA, DI RNA levels were greatly reduced, but there was only a slight transient reduction in viral RNA levels. These results together indicate that nsp1 is an RNA-binding protein that may function to regulate viral genome translation or replication but not by binding SLV-VI within its own coding region.


2004 ◽  
Vol 186 (9) ◽  
pp. 2708-2716 ◽  
Author(s):  
Sudhanshu Dole ◽  
Yvonne Klingen ◽  
V. Nagarajavel ◽  
Karin Schnetz

ABSTRACT The histone-like nucleoid structuring protein H-NS represses the Escherichia coli bgl operon at two levels. H-NS binds upstream of the promoter, represses transcription initiation, and binds downstream within the coding region of the first gene, where it induces polarity of transcription elongation. In hns mutants, silencing of the bgl operon is completely relieved. Various screens for mutants in which silencing of bgl is reduced have yielded mutations in hns and in genes encoding the transcription factors LeuO and BglJ. In order to identify additional factors that regulate bgl, we performed a transposon mutagenesis screen for mutants in which silencing of the operon is strengthened. This screen yielded mutants with mutations in cyaA, hfq, lon, and pgi, encoding adenylate cyclase, RNA-binding protein Hfq, protease Lon, and phosphoglucose isomerase, respectively. In cyaA mutants, the cyclic AMP receptor protein-dependent promoter is presumably inactive. The specific effect of the pgi mutants on bgl is low. Interestingly, in the hfq and lon mutants, the downstream silencing of bgl by H-NS (i.e., the induction of polarity) is more efficient, while the silencing of the promoter by H-NS is unaffected. Furthermore, in an hns mutant, Hfq has no significant effect and the effect of Lon is reduced. These data provide evidence that the specific repression by H-NS can (directly or indirectly) be modulated and controlled by other pleiotropic regulators.


Aging ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 2430-2446 ◽  
Author(s):  
Yingcheng Wu ◽  
Hao Chen ◽  
Yuyan Chen ◽  
Lishuai Qu ◽  
Erhao Zhang ◽  
...  

Author(s):  
Moumita Mukherjee ◽  
Srikanta Goswami

AbstractBackgroundThe world is going through the critical phase of COVID-19 pandemic, caused by human coronavirus, SARS-CoV2. Worldwide concerted effort to identify viral genomic changes across different sub-types has identified several strong changes in the coding region. However, there have not been many studies focusing on the variations in the 5’ and 3’ untranslated regions and their consequences. Considering the possible importance of these regions in host mediated regulation of viral RNA genome, we wanted to explore the phenomenon.MethodsTo have an idea of the global changes in 5’ and 3’-UTR sequences, we downloaded 8595 complete and high-coverage SARS-CoV2 genome sequence information from human host in FASTA format from Global Initiative on Sharing All Influenza Data (GISAID) from 15 different geographical regions. Next, we aligned them using Clustal Omega software and investigated the UTR variants. We also looked at the putative host RNA binding protein (RBP) and microRNA binding sites in these regions by ‘RBPmap’ and ‘RNA22 v2’ respectively. Expression status of selected RBPs and microRNAs were checked in lungs tissue.ResultsWe identified 28 unique variants in SARS-CoV2 UTR region based on a minimum variant percentage cut-off of 0.5. Along with 241C>T change the important 5’-UTR change identified was 187A>G, while 29734G>C, 29742G>A/T and 29774C>T were the most familiar variants of 3’UTR among most of the continents. Furthermore, we found that despite of the variations in the UTR regions, binding of host RBP to them remains mostly unaltered, which further influenced the functioning of specific miRNAs.ConclusionOur results, shows for the first time in SARS-Cov2 infection, a possible cross-talk between host RBPs-miRNAs and viral UTR variants, which ultimately could explain the mechanism of escaping host RNA decay machinery by the virus. The knowledge might be helpful in developing anti-viral compounds in future.


Sign in / Sign up

Export Citation Format

Share Document