scholarly journals Functional disruption of the prion protein gene in cloned goats

2006 ◽  
Vol 87 (4) ◽  
pp. 1019-1027 ◽  
Author(s):  
Guohua Yu ◽  
Jianquan Chen ◽  
Huiqing Yu ◽  
Siguo Liu ◽  
Juan Chen ◽  
...  

The cellular prion protein (PrPC), a membrane glycoprotein anchored to the outer surface of neurons, lymphocytes and other cells, is associated directly with the pathogenesis of the transmissible spongiform encephalopathies (TSEs) occurring mainly in humans, cattle, sheep and goats. Although mice lacking PrPC develop and reproduce normally and are resistant to scrapie infection, large animals lacking PrPC, especially those species in which TSE occurs naturally, are currently not available. Here, five live PRNP +/− goats cloned by gene targeting are reported. Detailed RNA-transcription and protein-expression analysis of one PRNP +/− goat showed that one allele of the caprine PRNP gene had been disrupted functionally. No gross abnormal development or behaviour could be seen in these PRNP +/− goats up to at least 3 months of age. These heterozygous PRNP +/− goats are ready to be used in producing homozygous PRNP −/− goats in which no PrPC should be expressed.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yong-Chan Kim ◽  
Seon-Kwan Kim ◽  
Byung-Hoon Jeong

Abstract Prion diseases in sheep and goats are called scrapie and belong to a group of transmissible spongiform encephalopathies (TSEs) caused by the abnormal misfolding of the prion protein encoded by the prion protein gene (PRNP). The shadow of the prion protein gene (SPRN) is the only prion gene family member that shows a protein expression profile similar to that of the PRNP gene in the central nervous system. In addition, genetic susceptibility of the SPRN gene has been reported in variant Creutzfeldt–Jakob disease (CJD), bovine spongiform encephalopathy (BSE) and scrapie. However, genetic studies of the SPRN gene have not been carried out in Korean native black goats. Here, we investigated the genotype and allele frequencies of SPRN polymorphisms in 213 Korean native black goats and compared these polymorphisms with those previously reported for scrapie-affected animals. We found a total of 6 polymorphisms including 1 nonsynonymous single nucleotide polymorphism (SNP) and 1 synonymous SNP in the open reading frame (ORF) region and 3 SNPs and 1 indel polymorphism (c.495_496insCTCCC) in the 3′ untranslated region (UTR) by direct DNA sequencing. A significant difference in the allele frequency of the c.495_496insCTCCC indel polymorphism was found between the Italian scrapie-affected goats and the Korean native black goats (P < 0.001). Furthermore, there was a significant difference in the allele frequencies of the c.495_496insCTCCC indel polymorphism between Italian healthy goats and Korean native black goats (P < 0.001). To evaluate the biological impact of the novel nonsynonymous SNP c.416G > A (Arg139Gln), we carried out PROVEAN analysis. PROVEAN predicted the SNP as ‘Neutral’ with a score of −0.297. To the best of our knowledge, this is the first genetic study of the SPRN gene in Korean native black goats.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1635
Author(s):  
Samia Kdidi ◽  
Mohamed Habib Yahyaoui ◽  
Michela Conte ◽  
Barbara Chiappini ◽  
Mohamed Hammadi ◽  
...  

Scrapie is a fatal prion disease. It belongs to transmissible spongiform encephalopathies (TSEs), and occurs in sheep and goats. Similarly, to ovine species, the prion protein gene (PRNP) plays a major role in conferring resistance or susceptibility to TSE in goats. This study assesses the variability of PRNP in native and crossed-breed goat populations raised in the Southeast of Tunisia and provides information on the distribution of PRNP haplotypes and genotypes in these goat populations. A total of 116 unrelated goats including 82 native and 34 crossed-breed goats were screened for PRNP polymorphisms using Sanger sequencing. Sequence analysis revealed 10 non-synonymous polymorphisms (G37V, M137I, R139S, I142M, H143R, N146D, R154H, R211Q, Q222K, and S240P), giving rise to 12 haplotypes and 23 genotypes. Moreover, four silent mutations were detected at codons 30, 42, 138, and 179; the former was reported for the first time in goat (nucleotide 60 c→t). Interestingly, the PrP variants associated with resistance (D146 and K222) or with a prolonged incubation time of goat to scrapie (M142, R143, H154, Q211) were absent or detected with low frequencies except for H154 variant, which is present with high frequency (1%, 1%, 4%, 0%, 88%, and 6%, respectively, for native goats, and 0%, 1%, 0%, 1%, 78%, and 1%, respectively, for crossed goats). The analysis of PRNP polymorphisms of goats raised in other regions of the country will be useful in getting a global view of PRNP genetic variability and the feasibility of goat breeding programs in Tunisia.


AGROFOR ◽  
2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Mohammad Farooque HASSAN

Prions are considered the only agents of transmissible spongiform encephalopathies (TSEs) and are harmful pathogens of mammals. These infectious agents of host are made up through aggregation of conformational isomers (PrPSc) and encode glycoprotein (PrPC) of 33-35 kDa. TSEs are the fatal group of diseases which are neurodegenerative and include chronic wasting disease in deer and elk, Creutzfeldt-Jakob disease (CJD) and transmissible mink encephalopathy (TME) in humans and scrapie in goats and sheep. The accumulation of abnormal form of the normal protein (PrP) is common in all diseases related TSE. This abnormal form of PrP called PrPSc is resistant to proteolysis as well as infectious. Present study was conducted in order to do sequence analysis of prion protein gene in twelve breeds of the sheep. We studied this gene to elucidate 12 of Pakistani sheep breeds and to compare gene order with other mammalian species. PCR amplification of 771 bp fragment was done on selected samples from all twelve breeds followed by sequencing. Sequence analysis was done and some sites were found to be heterozygous. These findings on prion protein gene in sheep will provide assistance for further studies on pathogenesis, cross-species transmission, breeding programs, resistance and susceptibility to scrapie.


2004 ◽  
Vol 85 (10) ◽  
pp. 3165-3172 ◽  
Author(s):  
P. L. Acutis ◽  
L. Sbaiz ◽  
F. Verburg ◽  
M. V. Riina ◽  
G. Ru ◽  
...  

Frequencies of polymorphisms at codons 136, 154 and 171 of the prion protein (PrP) gene were studied in 1207 pure-bred and cross-bred Italian Biellese rams, a small ovine breed of about 65 000 head in Italy. Aside from the five most common alleles (VRQ, ARQ, ARR, AHQ and ARH), the rare ARK allele was also found, with the highest frequency reported so far in an ovine breed (2·5 %). ARK/--- genotypes had a total frequency of 4·9 %. The resistance-associated ARR allele was seen at a low frequency (8·3 %). Only 1·4 % of animals examined had a resistant ARR/ARR PrP genotype. Semi-resistant (ARR/ARQ, ARR/ARH and ARR/AHQ) PrP genotypes had a total frequency of 12·6 % and PrP genotypes that are associated with high scrapie susceptibility (e.g. VRQ/VRQ and ARQ/ARQ) had a total frequency of 81·1 %. Statistical analysis comparing PrP allele frequencies between pure-bred and cross-bred animals showed that the ARR allele occurred at a significantly lower frequency in pure-bred rams. Furthermore, comparison of PrP allele frequencies between pure-bred rams over 18 months of age and those below 18 months of age showed a significant decrease in the ARR allele in breeding rams over 18 months of age. Based on these results, breeding for scrapie resistance in the Biellese breed will have to take into account the low frequency of the ARR allele, which also seems to be subject to negative selection by farmers. Further investigation is required to understand whether the ARK allele is also associated with resistance to transmissible spongiform encephalopathies.


2021 ◽  
Author(s):  
Maciej Gielnik ◽  
Aneta Szymanska ◽  
Xiaolin Dong ◽  
Jyri Jarvet ◽  
Zeljko M. Svedruzic ◽  
...  

Misfolding of the cellular prion protein (PrPC) is associated with the development of fatal neurodegenerative diseases called transmissible spongiform encephalopathies (TSEs). Metal ions appear to play a crucial role in the protein misfolding, and metal imbalance may be part of TSE pathologies. PrPC is a combined Cu(II) and Zn(II) metal binding protein, where the main metal binding site is located in the octarepeat (OR) region. Here, we used biophysical methods to characterize Cu(II) and Zn(II) binding to the isolated OR region. Circular dichroism (CD) spectroscopy data suggest that the OR domain binds up to four Cu(II) ions or two Zn(II) ions. Upon metal binding, the OR region seems to adopt a transient antiparallel β-sheet hairpin structure. Fluorescence spectroscopy data indicates that under neutral conditions, the OR region can bind both Cu(II) and Zn(II) ions, whereas under acidic conditions it binds only Cu(II) ions. Molecular dynamics simulations suggest that binding of both metal ions to the OR region results in formation of β-hairpin structures. As formation of β-sheet structures is a first step towards amyloid formation, we propose that high concentrations of either Cu(II) or Zn(II) ions may have a pro-amyloid effect in TSEs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maciej Gielnik ◽  
Michał Taube ◽  
Lilia Zhukova ◽  
Igor Zhukov ◽  
Sebastian K. T. S. Wärmländer ◽  
...  

AbstractThe cellular prion protein (PrPC) is a mainly α-helical 208-residue protein located in the pre- and postsynaptic membranes. For unknown reasons, PrPC can undergo a structural transition into a toxic, β-sheet rich scrapie isoform (PrPSc) that is responsible for transmissible spongiform encephalopathies (TSEs). Metal ions seem to play an important role in the structural conversion. PrPC binds Zn(II) ions and may be involved in metal ion transport and zinc homeostasis. Here, we use multiple biophysical techniques including optical and NMR spectroscopy, molecular dynamics simulations, and small angle X-ray scattering to characterize interactions between human PrPC and Zn(II) ions. Binding of a single Zn(II) ion to the PrPC N-terminal domain via four His residues from the octarepeat region induces a structural transition in the C-terminal α-helices 2 and 3, promotes interaction between the N-terminal and C-terminal domains, reduces the folded protein size, and modifies the internal structural dynamics. As our results suggest that PrPC can bind Zn(II) under physiological conditions, these effects could be important for the physiological function of PrPC.


2020 ◽  
Vol 21 (11) ◽  
pp. 4160 ◽  
Author(s):  
Dong-Ju Kim ◽  
Yong-Chan Kim ◽  
An-Dang Kim ◽  
Byung-Hoon Jeong

Transmissible spongiform encephalopathies (TSEs) have been reported in a wide range of species. However, TSE infection in natural cases has never been reported in dogs. Previous studies have reported that polymorphisms of the prion protein gene (PRNP) have a direct impact on the susceptibility of TSE. However, studies on polymorphisms of the canine PRNP gene are very rare in dogs. We examined the genotype, allele, and haplotype frequencies of canine PRNP in 204 dogs using direct sequencing and analyzed linkage disequilibrium (LD) using Haploview version 4.2. In addition, to evaluate the impact of nonsynonymous polymorphisms on the function of prion protein (PrP), we carried out in silico analysis using PolyPhen-2, PROVEAN, and PANTHER. Furthermore, we analyzed the structure of PrP and hydrogen bonds according to alleles of nonsynonymous single nucleotide polymorphisms (SNPs) using the Swiss-Pdb Viewer program. Finally, we predicted the impact of the polymorphisms on the aggregation propensity of dog PrP using AMYCO. We identified a total of eight polymorphisms, including five novel SNPs and one insertion/deletion polymorphism, and found strong LDs and six major haplotypes among eight polymorphisms. In addition, we identified significantly different distribution of haplotypes among eight dog breeds, however, the kinds of identified polymorphisms were different among each dog breed. We predicted that p.64_71del HGGGWGQP, Asp182Gly, and Asp182Glu polymorphisms can impact the function and/or structure of dog PrP. Furthermore, the number of hydrogen bonds of dog PrP with the Glu182 and Gly182 alleles were predicted to be less than those with the Asp182 allele. Finally, Asp163Glu and Asp182Gly showed more aggregation propensity than wild-type dog PrP. These results suggest that nonsynonymous SNPs, Asp182Glu and Asp182Gly, can influence the stability of dog PrP and confer the possibility of TSE infection in dogs.


2002 ◽  
Vol 9 (4) ◽  
pp. 245-252 ◽  
Author(s):  
France Mélot ◽  
Caroline Thielen ◽  
Thouraya Labiet ◽  
Sabine Eisher ◽  
Olivier Jolois ◽  
...  

The cellular prion protein (PrPc) is a glycolipid-anchored cell surface protein that usually exhibits three glycosylation states. Its post-translationally modified isoform, PrPsc, is involved in the pathogenesis of various transmissible spongiform encephalopathies (TSEs). In bovine species, BSE infectivity appears to be restricted to the central nervous system; few or no detectable infectivity is found in lymphoid tissues in contrast to scrapie or variant CJD. Since expression of PrPc is a prerequisite for prion replication, we have investigated PrPc expression by bovine immune cells. Lymphocytes from blood and five different lymph organs were isolated from the same animal to assess intra- and interindividual variability of PrPc expression, considering six individuals. As shown by flow cytometry, this expression is absent or weak on granulocytes but is measurable on monocytes, B and T cells from blood and lymph organs. The activation of the bovine cells produces an upregulation of PrPc. The results of our in vitro study of PrPc biosynthesis are consistent with previous studies in other species. Interestingly, western blotting experiments showed only one form of the protein, the diglycosylated band. We propose that the glycosylation state could explain the lack of infectivity of the bovine immune cells.


2006 ◽  
Vol 20 (1) ◽  
pp. 18-24 ◽  
Author(s):  
Gwynivere A Davies ◽  
Adam R Bryant ◽  
John D Reynolds ◽  
Frank R Jirik ◽  
Keith A Sharkey

The gastrointestinal (GI) tract plays a central role in the pathogenesis of transmissible spongiform encephalopathies. These are human and animal diseases that include bovine spongiform encephalopathy, scrapie and Creutzfeldt-Jakob disease. They are uniformly fatal neurological diseases, which are characterized by ataxia and vacuolation in the central nervous system. Alhough they are known to be caused by the conversion of normal cellular prion protein to its infectious conformational isoform (PrPsc) the process by which this isoform is propagated and transported to the brain remains poorly understood. M cells, dendritic cells and possibly enteroendocrine cells are important in the movement of infectious prions across the GI epithelium. From there, PrPscpropagation requires B lymphocytes, dendritic cells and follicular dendritic cells of Peyer’s patches. The early accumulation of the disease-causing agent in the plexuses of the enteric nervous system supports the contention that the autonomic nervous system is important in disease transmission. This is further supported by the presence of PrPscin the ganglia of the parasympathetic and sympathetic nerves that innervate the GI tract. Additionally, the lymphoreticular system has been implicated as the route of transmission from the gut to the brain. Although normal cellular prion protein is found in the enteric nervous system, its role has not been characterized. Further research is required to understand how the cellular components of the gut wall interact to propagate and transmit infectious prions to develop potential therapies that may prevent the progression of transmissible spongiform encephalopathies.


Sign in / Sign up

Export Citation Format

Share Document