scholarly journals The conserved N-terminal domain of herpes simplex virus 1 UL24 protein is sufficient to induce the spatial redistribution of nucleolin

2008 ◽  
Vol 89 (5) ◽  
pp. 1142-1151 ◽  
Author(s):  
Luc Bertrand ◽  
Angela Pearson

UL24 is widely conserved among herpesviruses but its function during infection is poorly understood. Previously, we discovered a genetic link between UL24 and the herpes simplex virus 1-induced dispersal of the nucleolar protein nucleolin. Here, we report that in the absence of viral infection, transiently expressed UL24 accumulated in both the nucleus and the Golgi apparatus. In the majority of transfected cells, nuclear staining for UL24 was diffuse, but a minor staining pattern, whereby UL24 was present in nuclear foci corresponding to nucleoli, was also observed. Expression of UL24 correlated with the dispersal of nucleolin. This dispersal did not appear to be a consequence of a general disaggregation of nucleoli, as foci of fibrillarin staining persisted in cells expressing UL24. The conserved N-terminal region of UL24 was sufficient to cause this change in subcellular distribution of nucleolin. Interestingly, a bipartite nuclear localization signal predicted within the C terminus of UL24 was dispensable for nuclear localization. None of the five individual UL24 homology domains was required for nuclear or Golgi localization, but deletion of these domains resulted in the loss of nucleolin-dispersal activity. We determined that a nucleolar-targeting signal was contained within the first 60 aa of UL24. Our results show that the conserved N-terminal domain of UL24 is sufficient to specifically induce dispersal of nucleolin in the absence of other viral proteins or virus-induced cellular modifications. These results suggest that UL24 directly targets cellular factors that affect the composition of nucleoli.

2009 ◽  
Vol 83 (24) ◽  
pp. 12725-12737 ◽  
Author(s):  
Luella Scholtes ◽  
Joel D. Baines

ABSTRACT The UL17 and UL25 proteins (pUL17 and pUL25, respectively) of herpes simplex virus 1 are located at the external surface of capsids and are essential for DNA packaging and DNA retention in the capsid, respectively. The current studies were undertaken to determine whether DNA packaging or capsid assembly affected the pUL17/pUL25 interaction. We found that pUL17 and pUL25 coimmunoprecipitated from cells infected with wild-type virus, whereas the major capsid protein VP5 (encoded by the UL19 gene) did not coimmunoprecipitate with these proteins under stringent conditions. In addition, pUL17 (i) coimmunoprecipitated with pUL25 in the absence of other viral proteins, (ii) coimmunoprecipitated with pUL25 from lysates of infected cells in the presence or absence of VP5, (iii) did not coimmunoprecipitate efficiently with pUL25 in the absence of the triplex protein VP23 (encoded by the UL18 gene), (iv) required pUL25 for proper solubilization and localization within the viral replication compartment, (v) was essential for the sole nuclear localization of pUL25, and (vi) required capsid proteins VP5 and VP23 for nuclear localization and normal levels of immunoreactivity in an indirect immunofluorescence assay. Proper localization of pUL25 in infected cell nuclei required pUL17, pUL32, and the major capsid proteins VP5 and VP23, but not the DNA packaging protein pUL15. The data suggest that VP23 or triplexes augment the pUL17/pUL25 interaction and that VP23 and VP5 induce conformational changes in pUL17 and pUL25, exposing epitopes that are otherwise partially masked in infected cells. These conformational changes can occur in the absence of DNA packaging. The data indicate that the pUL17/pUL25 complex requires multiple viral proteins and functions for proper localization and biochemical behavior in the infected cell.


2005 ◽  
Vol 79 (20) ◽  
pp. 13082-13093 ◽  
Author(s):  
Wali Hafezi ◽  
Emmanuelle Bernard ◽  
Rachelle Cook ◽  
Gillian Elliott

ABSTRACT Many steps along the herpesvirus assembly and maturation pathway remain unclear. In particular, the acquisition of the virus tegument is a poorly understood process, and the molecular interactions involved in tegument assembly have not yet been defined. Previously we have shown that the two major herpes simplex virus tegument proteins VP22 and VP16 are able to interact, although the relevance of this to virus assembly is not clear. Here we have constructed a number of recombinant viruses expressing N- and C-terminal truncations of VP22 and have used them to identify regions of the protein involved in its assembly into the virus structure. Analysis of the packaging of these VP22 variants into extracellular virions revealed that the C terminus of VP22 is absolutely required for this process, with removal of the C-terminal 89 residues abrogating its incorporation. However, while these 89 residues alone were sufficient for specific incorporation of small amounts of VP22 into the tegument, efficient packaging of VP22 to the levels of full-length protein required an additional 52 residues of the protein. Coimmunoprecipitation assays indicated that these 52 residues also contained the interaction domain for VP16. Furthermore, analysis of the subcellular localization of the mutant forms of VP22 revealed that only those truncations that were efficiently assembled formed characteristic cytoplasmic trafficking complexes, suggesting that these complexes may represent the cellular location for VP22 assembly into the virus. Taken together, these results suggest that there are two determinants involved in the packaging of VP22—a C-terminal domain and an internal VP16 interaction domain, both of which are required for the efficient recruitment of VP22 to sites of virus assembly.


2005 ◽  
Vol 86 (9) ◽  
pp. 2411-2419 ◽  
Author(s):  
Xianghong Jing ◽  
Bin He

The γ 134·5 protein of herpes simplex virus 1 (HSV-1) consists of an amino-terminal domain, a central domain with triplet repeats (Ala–Thr–Pro) and a carboxyl-terminal domain. The triplet repeats are a unique feature of the γ 134·5 protein encoded by HSV-1, but the number of repeats varies among different strains. Notably, the central domain containing the triplet repeats is implicated in neuroinvasion. In this report, it has been shown that partial or full deletion of triplet repeats, i.e. from ten to either three or zero, in the γ 134·5 protein has no effect on the virus response to interferon. The triplet deletion mutants replicate efficiently in CV-1 and mouse 10T1/2 cells. However, in mouse 3T6 cells, these mutants grow with delayed growth kinetics. This decrease in growth, compared with wild-type HSV-1(F), does not result from failure of the virus to suppress the RNA-dependent protein kinase response, but rather from a delay in virus release or egress. Accordingly, these mutant viruses are predominantly present within infected cells. These results indicate that deletions in the central domain of the γ 134·5 protein impair virus egress, but not virus response to interferon.


2016 ◽  
Vol 90 (23) ◽  
pp. 10875-10885 ◽  
Author(s):  
Yi Zheng ◽  
Subodh Kumar Samrat ◽  
Haidong Gu

ABSTRACTInfected cell protein 0 (ICP0) of herpes simplex virus 1 (HSV-1) is an α gene product required for viral replication at low multiplicities of infection. Upon entry, nuclear domain 10 (ND10) converges at the incoming DNA and represses viral gene expression. ICP0 contains a RING-type E3 ubiquitin ligase that degrades the ND10 organizer PML and disperses ND10 to alleviate the repression. In the present study, we focused on understanding the regulation of ICP0 E3 ligase activity in the degradation of different ICP0 substrates. We report the following. (i) A SUMO interaction motif located at ICP0 residues 362 to 364 is required for the degradation of PML isoforms II, IV, and VI but not isoform I. This differentiation mechanism exists in both HEp-2 and U2OS cells, regardless of the cell's permissiveness to the ICP0-null virus. (ii) Physical interaction between SIM362–364and PML II is necessary but not sufficient for PML II degradation. Both proximal sequences surrounding SIM362–364and distal sequences located at the ICP0 C terminus enhance the degradation of PML II. (iii) The ICP0 C terminus is dispensable for PML I degradation. Instead, bipartite PML I binding domains located in the N-terminal half of ICP0 coordinate to promote the degradation of PML I. (iv) The stability of ICP0, but not its ND10 fusion ability, affects the rate of PML I degradation. Taken together, our results show that ICP0 uses at least two regulatory mechanisms to differentiate its substrates. The disparate recognition of the ICP0 E3 substrates may be related to the different roles these substrates may play in HSV-1 infection.IMPORTANCEViruses have a limited genetic coding capacity but must encounter a multilayered comprehensive host defense. To establish a successful infection, viruses usually produce multifunctional proteins to coordinate the counteractions. Here we report that an HSV-1 protein, ICP0, can recognize individual host factors and target them differently for destruction. We identified elements that are important for the ICP0 E3 ubiquitin ligase to differentially recognize two of its substrates, PML I and PML II. This is the first study that has systematically investigated how ICP0 discriminates two similar molecules by very different mechanisms. This work lays the foundation for understanding the role of host defensive factors and the mechanisms viruses use to take advantage of some host proteins while destroying others.


2016 ◽  
Vol 91 (2) ◽  
Author(s):  
Pooja Chadha ◽  
Akua Sarfo ◽  
Dan Zhang ◽  
Thomas Abraham ◽  
Jillian Carmichael ◽  
...  

ABSTRACT The UL16 tegument protein of herpes simplex virus 1 (HSV-1) is conserved among all herpesviruses and plays many roles during replication. This protein has an N-terminal domain (NTD) that has been shown to bind to several viral proteins, including UL11, VP22, and glycoprotein E, and these interactions are negatively regulated by a C-terminal domain (CTD). Thus, in pairwise transfections, UL16 binding is enabled only when the CTD is absent or altered. Based on these results, we hypothesized that direct interactions occur between the NTD and the CTD. Here we report that the separated and coexpressed functional domains of UL16 are mutually responsive to each other in transfected cells and form complexes that are stable enough to be captured in coimmunoprecipitation assays. Moreover, we found that the CTD can associate with itself. To our surprise, the CTD was also found to contain a novel and intrinsic ability to localize to specific spots on mitochondria in transfected cells. Subsequent analyses of HSV-infected cells by immunogold electron microscopy and live-cell confocal imaging revealed a population of UL16 that does not merely accumulate on mitochondria but in fact makes dynamic contacts with these organelles in a time-dependent manner. These findings suggest that the domain interactions of UL16 serve to regulate not just the interaction of this tegument protein with its viral binding partners but also its interactions with mitochondria. The purpose of this novel interaction remains to be determined. IMPORTANCE The HSV-1-encoded tegument protein UL16 is involved in multiple events of the virus replication cycle, ranging from virus assembly to cell-cell spread of the virus, and hence it can serve as an important drug target. Unfortunately, a lack of both structural and functional information limits our understanding of this protein. The discovery of domain interactions within UL16 and the novel ability of UL16 to interact with mitochondria in HSV-infected cells lays a foundational framework for future investigations aimed at deciphering the structure and function of not just UL16 of HSV-1 but also its homologs in other herpesviruses.


2019 ◽  
Vol 100 (12) ◽  
pp. 1701-1713 ◽  
Author(s):  
Juliet Jones ◽  
Daniel Pearce Depledge ◽  
Judith Breuer ◽  
Katja Ebert-Keel ◽  
Gillian Elliott

The Glasgow s17 syn+ strain of herpes simplex virus 1 (HSV1) is arguably the best characterized strain and has provided the reference sequence for HSV1 genetic studies. Here we show that our original s17 syn+ stock was a mixed population from which we have isolated a minor variant that, unlike other strains in the laboratory, fails to be efficiently released from infected cells and spreads predominantly by direct cell-to-cell transmission. Analysis of other s17-derived viruses that had been isolated elsewhere revealed a number with the same release phenotype. Second-generation sequencing of 8 plaque-purified s17-derived viruses revealed sequences that vary by 50 single-nucleotide polymorphisms (SNPs), including approximately 10 coding SNPs. This compared to interstrain variations of around 800 SNPs in strain Sc16, of which a quarter were coding changes. Amongst the variations found within s17, we identified 13 variants of glycoprotein C within the original stock of virus that were predominantly a consequence of altered homopolymeric runs of C residues. Characterization of seven isolates coding for different forms of gC indicated that all were expressed, despite six of them lacking a transmembrane domain. While the release phenotype did not correlate directly with any of these identified gC variations, further demonstration that nine clinical isolates of HSV1 also fail to spread through extracellular release raises the possibility that propagation in tissue culture had altered the HSV1 s17 transmission phenotype. Hence, the s17 intrastrain variation identified here offers an excellent model for understanding both HSV1 transmission and tissue culture adaptation.


Sign in / Sign up

Export Citation Format

Share Document