scholarly journals Effect of Atmospheric Pollutants on the Air Quality in Tunisia

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Karim Bouchlaghem ◽  
Blaise Nsom

This paper presents the evolution of Saharan dust advection when the PM10 (particles with an aerodynamic diameter below 10 μm) concentration exceeds standard limits in different Tunisian sites. Meteorological and concentration data (from 2004 to 2010) obtained from several monitoring stations and in situ measurements were used to identify African dust change in seasonal occurrence, their source origin, and their impact on surface PM10 concentrations. We pointed out that the Saharan dust contribution caused frequently the surpassing of the maximum number of days in excess of EU standard limits as well as of the maximum yearly average in the Mediterranean Tunisian coasts. The maximum daily concentration reaches 439 μg/m3during the Saharan events. The decrease in particulate levels recorded at the end of each event is due to the injection of European air masses and rainfalls. Primary pollutants peaks were much higher in winter than in summer which can be explained on the basis of the lower ventilation and mixing.

2011 ◽  
Vol 11 (7) ◽  
pp. 3067-3091 ◽  
Author(s):  
C. Córdoba-Jabonero ◽  
M. Sorribas ◽  
J. L. Guerrero-Rascado ◽  
J. A. Adame ◽  
Y. Hernández ◽  
...  

Abstract. The synergetic use of meteorological information, remote sensing both ground-based active (lidar) and passive (sun-photometry) techniques together with backtrajectory analysis and in-situ measurements is devoted to the characterization of dust intrusions. A case study of air masses advected from the Saharan region to the Canary Islands and the Iberian Peninsula, located relatively close and far away from the dust sources, respectively, was considered for this purpose. The observations were performed over three Spanish geographically strategic stations within the dust-influenced area along a common dust plume pathway monitored from 11 to 19 of March 2008. A 4-day long dust event (13–16 March) over the Santa Cruz de Tenerife Observatory (SCO), and a linked short 1-day dust episode (14 March) in the Southern Iberian Peninsula over the Atmospheric Sounding Station "El Arenosillo" (ARN) and the Granada station (GRA) were detected. Meteorological conditions favoured the dust plume transport over the area under study. Backtrajectory analysis clearly revealed the Saharan region as the source of the dust intrusion. Under the Saharan air masses influence, AERONET Aerosol Optical Depth at 500 nm (AOD500) ranged from 0.3 to 0.6 and Ångström Exponent at 440/675 nm wavelength pair (AE440/675) was lower than 0.5, indicating a high loading and predominance of coarse particles during those dusty events. Lidar observations characterized their vertical layering structure, identifying different aerosol contributions depending on altitude. In particular, the 3-km height dust layer transported from the Saharan region and observed over SCO site was later on detected at ARN and GRA stations. No significant differences were found in the lidar (extinction-to-backscatter) ratio (LR) estimation for that dust plume over all stations when a suitable aerosol scenario for lidar data retrieval is selected. Lidar-retrieved LR values of 60–70 sr were obtained during the main dust episodes. These similar LR values found in all the stations suggest that dust properties were kept nearly unchanged in the course of its medium-range transport. In addition, the potential impact on surface of that Saharan dust intrusion over the Iberian Peninsula was evaluated by means of ground-level in-situ measurements for particle deposition assessment together with backtrajectory analysis. However, no connection between those dust plumes and the particle sedimentation registered at ground level is found. Differences on particle deposition processes observed in both Southern Iberian Peninsula sites are due to the particular dust transport pattern occurred over each station. Discrepancies between columnar-integrated and ground-level in-situ measurements show a clear dependence on height of the dust particle size distribution. Then, further vertical size-resolved observations are needed for evaluation of the impact on surface of the Saharan dust arrival to the Iberian Peninsula.


2014 ◽  
Vol 10 (1) ◽  
pp. 29-37
Author(s):  
Wani Tamas ◽  
Gilles Notton ◽  
Christophe Paoli ◽  
Cyril Voyant ◽  
Marie-Laure Nivet ◽  
...  

Abstract Atmospheric pollutants concentration forecasting is an important issue in air quality monitoring. Qualitair Corse, the organization responsible for monitoring air quality in Corsica (France), needs to develop a short-term prediction model to lead its mission of information towards the public. Various deterministic models exist for local forecasting, but need important computing resources, a good knowledge of atmospheric processes and can be inaccurate because of local climatical or geographical particularities, as observed in Corsica, a mountainous island located in the Mediterranean Sea. As a result, we focus in this study on statistical models, and particularly Artificial Neural Networks (ANNs) that have shown good results in the prediction of ozone concentration one hour ahead with data measured locally. The purpose of this study is to build a predictor realizing predictions of ozone 24 hours ahead in Corsica in order to be able to anticipate pollution peaks formation and to take appropriate preventive measures. Specific meteorological conditions are known to lead to particular pollution event in Corsica (e.g. Saharan dust events). Therefore, an ANN model will be used with pollutant and meteorological data for operational forecasting. Index of agreement of this model was calculated with a one year test dataset and reached 0.88.


2021 ◽  
Vol 14 (2) ◽  
pp. 995-1013
Author(s):  
Colby Buehler ◽  
Fulizi Xiong ◽  
Misti Levy Zamora ◽  
Kate M. Skog ◽  
Joseph Kohrman-Glaser ◽  
...  

Abstract. The distribution and dynamics of atmospheric pollutants are spatiotemporally heterogeneous due to variability in emissions, transport, chemistry, and deposition. To understand these processes at high spatiotemporal resolution and their implications for air quality and personal exposure, we present custom, low-cost air quality monitors that measure concentrations of contaminants relevant to human health and climate, including gases (e.g., O3, NO, NO2, CO, CO2, CH4, and SO2) and size-resolved (0.3–10 µm) particulate matter. The devices transmit sensor data and location via cellular communications and are capable of providing concentration data down to second-level temporal resolution. We produce two models: one designed for stationary (or mobile platform) operation and a wearable, portable model for directly measuring personal exposure in the breathing zone. To address persistent problems with sensor drift and environmental sensitivities (e.g., relative humidity and temperature), we present the first online calibration system designed specifically for low-cost air quality sensors to calibrate zero and span concentrations at hourly to weekly intervals. Monitors are tested and validated in a number of environments across multiple outdoor and indoor sites in New Haven, CT; Baltimore, MD; and New York City. The evaluated pollutants (O3, NO2, NO, CO, CO2, and PM2.5) performed well against reference instrumentation (e.g., r=0.66–0.98) in urban field evaluations with fast e-folding response times (≤ 1 min), making them suitable for both large-scale network deployments and smaller-scale targeted experiments at a wide range of temporal resolutions. We also provide a discussion of best practices on monitor design, construction, systematic testing, and deployment.


2019 ◽  
Vol 19 (23) ◽  
pp. 14571-14583 ◽  
Author(s):  
Carlos Toledano ◽  
Benjamín Torres ◽  
Cristian Velasco-Merino ◽  
Dietrich Althausen ◽  
Silke Groß ◽  
...  

Abstract. The Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment (SALTRACE) was devoted to the investigation of Saharan dust properties over the Caribbean. The campaign took place in June–July 2013. A wide set of ground-based and airborne aerosol instrumentation was deployed at the island of Barbados for a comprehensive experiment. Several sun photometers performed measurements during this campaign: two AERONET (Aerosol Robotic Network) Cimel sun photometers and the Sun and Sky Automatic Radiometer (SSARA). The sun photometers were co-located with the ground-based multi-wavelength lidars BERTHA (Backscatter Extinction lidar Ratio Temperature Humidity profiling Apparatus) and POLIS (Portable Lidar System). Aerosol properties derived from direct sun and sky radiance observations are analyzed, and a comparison with the co-located lidar and in situ data is provided. The time series of aerosol optical depth (AOD) allows identifying successive dust events with short periods in between in which the marine background conditions were observed. The moderate aerosol optical depth in the range of 0.3 to 0.6 was found during the dust periods. The sun photometer infrared channel at the 1640 nm wavelength was used in the retrieval to investigate possible improvements to aerosol size retrievals, and it was expected to have a larger sensitivity to coarse particles. The comparison between column (aerosol optical depth) and surface (dust concentration) data demonstrates the connection between the Saharan Air Layer and the boundary layer in the Caribbean region, as is shown by the synchronized detection of the successive dust events in both datasets. However the differences of size distributions derived from sun photometer data and in situ observations reveal the difficulties in carrying out a column closure study.


2020 ◽  
Author(s):  
Colby Buehler ◽  
Fulizi Xiong ◽  
Misti Levy Zamora ◽  
Kate M. Skog ◽  
Joseph Kohrman-Glaser ◽  
...  

Abstract. The distribution and dynamics of atmospheric pollutants are spatiotemporally heterogeneous due to variability in emissions, transport, chemistry, and deposition. To understand these processes at high spatiotemporal resolution and their implications for air quality and personal exposure, we present custom, low-cost air quality monitors that measure concentrations of contaminants relevant to human health and climate, including gases (e.g. O3, NO, NO2, CO, CO2, CH4, and SO2) and size-resolved (0.3–10 µm) particulate matter. The devices transmit sensor data and location via cellular communications, and are capable of providing concentration data down to second-level temporal resolution. We produce two models; one designed for stationary (or mobile platform) operation, and a wearable, portable model for directly measuring personal exposure in the breathing zone. To address persistent problems with sensor drift and environmental sensitivities (e.g. relative humidity and temperature), we present the first online calibration system designed specifically for low-cost air quality sensors to calibrate zero and span concentrations at hourly to weekly intervals. Monitors are tested and validated in a number of environments across multiple outdoor and indoor sites in New Haven, CT, Baltimore, MD, and New York City. The evaluated pollutants (O3, NO2, NO, CO, CO2, and PM2.5) performed well against reference instrumentation (e.g. r = 0.66–0.98) in urban field evaluations with fast e-folding response times (≤ 1 min), making them suitable for both large-scale network deployments and smaller-scale targeted experiments at a wide range of temporal resolutions. We also provide a discussion of best practices on monitor design, construction, systematic testing, and deployment.


2021 ◽  
Vol 13 (1) ◽  
pp. 1656-1667
Author(s):  
Lei Wang ◽  
Jiarong Deng ◽  
Lijin Yang ◽  
Tianrun Yu ◽  
Yunlong Yao ◽  
...  

Abstract Based on the air quality data of Harbin in winter from 2015 to 2017, the national winter straw combustion data from 2016 to 2017 and the mixed single particle Lagrange comprehensive track model, Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT), dynamic analysis of Harbin’s winter air quality status and influencing factors. The air quality data were analyzed; it was found that the main pollutants in winter in Harbin were SO2, NO2, PM10 (particles with aerodynamic diameter ≤10 µm), and PM2.5 (particles with aerodynamic diameter ≤2.5 µm); the annual air pollution situation deteriorated sharply from November and continued until March of the following year. Through the research on straw fire prevention points in Harbin, the spatial pattern characteristics and causes of persistent haze in Harbin from 2015 to 2017 were dynamically analyzed. Combining the backward trajectory model to trace the source and trend of air mass in pollution, it is found that the air mass trend is consistent with the distribution of straw-burning points. The research results show that (1) during the winter from 2015 to 2017, the overall air quality situation in Harbin improved, the number of serious pollution days decreased year by year, and the main atmospheric pollutants were PM10 and PM2.5. In October and November, the pollution concentration peaked, and after December, the pollution concentration showed a downward trend until the next spring reached the valley and (2) the most obvious time of haze in Harbin is from November to December, and it is concluded that haze events are closely related to the large number of pollutants caused by the burning of straw around Harbin, and because the northwest monsoon climate affects the air quality, the transportation of fine particles caused by the burning of straw in winter in the surrounding areas of Harbin is the main cause of serious pollution in Harbin.


2019 ◽  
Author(s):  
Carlos Toledano ◽  
Benjamín Torres ◽  
Cristian Velasco-Merino ◽  
Dietrich Althausen ◽  
Silke Groß ◽  
...  

Abstract. The Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment (SALTRACE) was devoted to the investigation of Saharan dust properties over the Caribbean. The campaign took place in June–July 2013. A wide set of ground-based and airborne aerosol instrumentation was deployed at Barbados island for a comprehensive experiment. Several sun photometers performed measurements during this campaign: two AERONET Cimel sun photometers and the Sun and Sky Automatic Radiometer (SSARA). The sun photometers were co-located with the ground-based multi-wavelength lidars BERTHA and POLIS. Aerosol properties derived from direct sun and sky radiance observations are analyzed, and a comparison with the co-located lidar and in-situ data is provided. The time series of aerosol optical depth allows identifying successive dust events with short periods in between in which the marine background conditions were observed. Moderate aerosol optical depth in the range 0.3 to 0.6 was found during the dust periods. The sun photometer infrared channel at 1640 nm wavelength was used in the retrieval to investigate possible improvements and expected larger sensitivity to coarse particles. The comparison between column (AOD) and surface (dust concentration) data demonstrates the connection between the Saharan Air Layer and the boundary layer in the Caribbean region, as it is shown by the synchronized detection of the successive dust events in both data sets. However the comparison of size distributions derived from sun photometer data and in-situ observations reveal the difficulties to carry out a column closure study.


2010 ◽  
Vol 10 (11) ◽  
pp. 27015-27074 ◽  
Author(s):  
C. Córdoba-Jabonero ◽  
M. Sorribas ◽  
J. L. Guerrero-Rascado ◽  
J. A. Adame ◽  
Y. Hernández ◽  
...  

Abstract. Synergetic use of meteorological information, remote sensing both ground-based active (lidar) and passive (sun-photometry) techniques together with backtrajectory analysis and in situ measurements is carried out for the characterization of dust intrusions. A case study of air masses advected from Saharan region to the Canary Islands and the Iberian Peninsula, relatively located close and far away from the dust sources, respectively, was monitored from 11 to 19 March 2008. The observations were performed over three Spanish geographically strategic within the dust-influenced area stations along a common dust plume pathway. A 4-day long dust event (13–16 March) over the Santa Cruz de Tenerife Observatory (SCO), and a linked short 1-day dust episode (14 March) in the Southern Iberian Peninsula over both the Atmospheric Sounding Station "El Arenosillo" (ARN) and the Granada station (GRA) were detected. Meteorological situation favoured the dust plume transport over the area under study. Backtrajectory analysis clearly showed the Saharan origin of the dust intrusion. Under the Saharan air masses influence, AERONET Aerosol Optical Depth at 500 nm (AOD500) ranged from 0.3 to 0.6 and Angstrom Exponent at 440/675 nm wavelength pair (AE440/675) was lower than 0.5, indicating a high loading and predominance of coarse particles during those dusty events. Lidar observations characterized their vertical layering structure, identifying different aerosol contributions depending on altitude. In particular, the 3-km height layer observed over ARN and GRA stations corresponds to that dust plume transported from Saharan region after crossing through Canary Islands at 3 km height as observed over SCO site as well. No significant differences were found in the lidar (extinction-to-backscatter) ratio (LR) estimation for that dust plume over all stations when a suitable aerosol scenario for lidar data retrieval is selected. Lidar-retrieved LR values of 65–70 sr were obtained during the principal dusty episodes. These similar LR values found in all the stations suggest that dust properties were kept unchanged in the course of its medium-range transport. In addition, the potential impact on surface of that Saharan dust intrusion over the Iberian Peninsula was evaluated by ground-level in situ measurements for particle deposition assessment together with backtrajectory analysis. However, no connection between those dust plumes and the particle sedimentation registered at ground level is found. Differences on particle deposition process observed in both Southern Iberian Peninsula sites are due to the particular dust transport pattern occurred in each station.


2020 ◽  
Vol 01 ◽  
Author(s):  
Henrik Jensen ◽  
Pernille D. Pedersen

Aims: To evaluate the real-life effect of photocatalytic surfaces on the air quality at two test-sites in Denmark. Background: Poor air quality is today one of the largest environmental issues, due to the adverse effects on human health associated with high levels of air pollution, including respiratory issues, cardiovascular disease (CVD), and lung cancer. NOx removal by TiO2 based photocatalysis is a tool to improve air quality locally in areas where people are exposed. Methods: Two test sites were constructed in Roskilde and Copenhage airport. In Roskilde, the existing asphalt at two parking lots was treated with TiO2 containing liquid and an in-situ ISO 22197-1 test setup was developed to enable in-situ evaluation of the activity of the asphalt. In CPH airport, photocatalytic concrete tiles were installed at the "kiss and fly" parking lot, and NOx levels were continuously monitored in 0.5 m by CLD at the active site and a comparable reference site before and after installation for a period of 2 years. Results: The Roskilde showed high stability of the photocatalytic coating with the activity being largely unchanged over a period of 2 years. The CPH airport study showed that the average NOx levels were decreased by 12 % comparing the before and after NOx concentrations at the active and reference site. Conclusion: The joined results of the two Danish demonstration projects illustrate a high stability of the photocatalytic coating as well as a high potential for improvements of the real-life air quality in polluted areas.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 562
Author(s):  
Jorge Moreda-Piñeiro ◽  
Joel Sánchez-Piñero ◽  
María Fernández-Amado ◽  
Paula Costa-Tomé ◽  
Nuria Gallego-Fernández ◽  
...  

Due to the exponential growth of the SARS-CoV-2 pandemic in Spain (2020), the Spanish Government adopted lockdown measures as mitigating strategies to reduce the spread of the pandemic from 14 March. In this paper, we report the results of the change in air quality at two Atlantic Coastal European cities (Northwest Spain) during five lockdown weeks. The temporal evolution of gaseous (nitrogen oxides, comprising NOx, NO, and NO2; sulfur dioxide, SO2; carbon monoxide, CO; and ozone, O3) and particulate matter (PM10; PM2.5; and equivalent black carbon, eBC) pollutants were recorded before (7 February to 13 March 2020) and during the first five lockdown weeks (14 March to 20 April 2020) at seven air quality monitoring stations (urban background, traffic, and industrial) in the cities of A Coruña and Vigo. The influences of the backward trajectories and meteorological parameters on air pollutant concentrations were considered during the studied period. The temporal trends indicate that the concentrations of almost all species steadily decreased during the lockdown period with statistical significance, with respect to the pre-lockdown period. In this context, great reductions were observed for pollutants related mainly to fossil fuel combustion, road traffic, and shipping emissions (−38 to −78% for NO, −22 to −69% for NO2, −26 to −75% for NOx, −3 to −77% for SO2, −21% for CO, −25 to −49% for PM10, −10 to −38% for PM2.5, and −29 to −51% for eBC). Conversely, O3 concentrations increased from +5 to +16%. Finally, pollutant concentration data for 14 March to 20 April of 2020 were compared with those of the previous two years. The results show that the overall air pollutants levels were higher during 2018–2019 than during the lockdown period.


Sign in / Sign up

Export Citation Format

Share Document