scholarly journals Limb Regeneration in Amphibians: Immunological Considerations

2006 ◽  
Vol 6 ◽  
pp. 1-11 ◽  
Author(s):  
Anthony L. Mescher ◽  
Anton W. Neff

We review key aspects of what is known about limb regeneration in urodele and anuran amphibians, with a focus on the early events of the process that lead to formation of the regeneration blastema. This includes the role of the nerves and wound epithelium, but also covers the inflammatory effects of the amputation trauma and their importance for regenerative growth. We propose that immunotolerance is important for limb regeneration and changes in its regulation may underlie the loss of regenerative capacity during anuran metamorphosis.

1987 ◽  
Vol 65 (8) ◽  
pp. 739-749 ◽  
Author(s):  
Roy A. Tassava ◽  
David J. Goldhamer ◽  
Bruce L. Tomlinson

Data from pulse and continuous labeling with [3H]thymidine and from studies with monoclonal antibody WE3 have led to the modification of existing models and established concepts pertinent to understanding limb regeneration. Not all cells of the adult newt blastema are randomly distributed and actively progressing through the cell cycle. Instead, many cells are in a position that we have designated transient quiescence (TQ) and are not actively cycling. We postulate that cells regularly leave the TQ population and enter the actively cycling population and vice versa. The size of the TQ population may be at least partly determined by the quantity of limb innervation. Larval Ambystoma may have only a small or nonexisting TQ, thus accounting for their rapid rate of regeneration. Examination of reactivity of monoclonal antibody WE3 suggests that the early wound epithelium, which is derived from skin epidermis, is later replaced by cells from skin glands concomitant with blastema formation. WE3 provides a useful tool to further investigate the regenerate epithelium.


2006 ◽  
Vol 6 ◽  
pp. 12-25 ◽  
Author(s):  
Stéphane Roy ◽  
Mathieu Lévesque

The ability of axolotls to regenerate their limbs is almost legendary. In fact, urodeles such as the axolotl are the only vertebrates that can regenerate multiple structures like their limbs, jaws, tail, spinal cord, and skin (the list goes on) throughout their lives. It is therefore surprising to realize, although we have known of their regenerative potential for over 200 years, how little we understand the mechanisms behind this achievement of adult tissue morphogenesis. Many observations can be drawn between regeneration and other disciplines such as development and wound healing. In this review, we present new developments in functional analysis that will help to address the role of specific genes during the process of regeneration. We also present an analysis of the resemblance between wound healing and regeneration, and discuss whether axolotls are superhealers. A better understanding of these animals' regenerative capacity could lead to major benefits by providing regenerative medicine with directions on how to develop therapeutic approaches leading to regeneration in humans.


Development ◽  
1979 ◽  
Vol 50 (1) ◽  
pp. 235-242
Author(s):  
M. Maden

The amphibian limb regeneration blastema is used here to examine whether irradiated, non-dividing tissue can participate in the development of new patterns of morphogenesis. Irradiated blastemas were rotated 180° on normal stumps and normal blastemas rotated on irradiated stumps. In both cases supernumerary elements developed from the unirradiated tissue. The supernumeraries were defective but this did not seem to be due to a lack of tissue. Rather it suggested that this could be a realization of compartments in vertebrate development or simply reflect the limited regulative ability of the blastema. The results are also discussed in relation to a recent model of pattern formation.


1999 ◽  
Vol 77 (6) ◽  
pp. 902-909
Author(s):  
Leigh-Anne D Miller ◽  
Melissa L Farquhar ◽  
John S Greenwood ◽  
Steven R Scadding

Gap junctions are thought to play a role in pattern formation during limb development and regeneration by controlling the movement of small regulatory molecules between cells. An anteroposterior gradient of gap junctional communication that is higher posteriorly has been reported in the developing chick limb bud. In both the developing chick limb bud and the amphibian regenerating limb, an anteroposterior retinoic acid gradient is present, and this is also higher posteriorly. On the basis of these observations, we decided to examine the role of gap junctional communication in the regenerating amphibian limb. Gap junctions were observed in both the axolotl, Ambystoma mexicanum, limb regeneration blastema and cardiac tissue (as a positive control), using immunohistochemical labelling and laser scanning confocal microscopy. The scrape-loading/dye transfer technique for tracing the movement of a gap junction permeable dye, Lucifer yellow, showed that in blastemal epidermis there were nonuniform distributions of gap junctions in both the dorsoventral and anteroposterior axes of the blastema. Retinoic acid was found to increase gap junctional permeability in blastemal epidermis 48 h after injection and in blastemal mesenchyme 76 h after injection. The potential role of gap junctions during pattern formation in limb regeneration is discussed based on these results.


2019 ◽  
Vol 14 (7) ◽  
pp. 598-606
Author(s):  
Sarah Albogami

Background:: Regeneration is the process by which body parts lost as a result of injury are replaced, as observed in certain animal species. The root of regenerative differences between organisms is still not very well understood; if regeneration merely recycles developmental pathways in the adult form, why can some animals regrow organs whereas others cannot? In the regulation of the regeneration process as well as other biological phenomena, epigenetics plays an essential role. Objective:: This review aims to demonstrate the role of epigenetic regulators in determining regenerative capacity. Results:: In this review, we discuss the basis of regenerative differences between organisms. In addition, we present the current knowledge on the role of epigenetic regulation in regeneration, including DNA methylation, histone modification, lysine methylation, lysine methyltransferases, and the SET1 family. Conclusion:: An improved understanding of the regeneration process and the epigenetic regulation thereof through the study of regeneration in highly regenerative species will help in the field of regenerative medicine in future.


Author(s):  
Adrián Yoris ◽  
Adolfo M. García ◽  
Paula Celeste Salamone ◽  
Lucas Sedeño ◽  
Indira García-Cordero ◽  
...  

Dimensional and transdiagnostic approaches have revealed multiple cognitive/emotional alterations shared by several neuropsychiatric conditions. While this has been shown for externally triggered neurocognitive processes, the disruption of interoception across neurological disorders remains poorly understood. This chapter aims to fill this gap while proposing cardiac interoception as a potential common biomarker across disorders. It focuses on key aspects of interoception, such as the mechanisms underlying different interoceptive dimensions; the relationship among interoception, emotion, and social cognition; and the roles of different interoceptive pathways. It considers behavioral and brain evidence in the context of an experimental and clinical agenda to evaluate the potential role of interoception as a predictor of clinical outcomes, a marker of neurocognitive deficits across diseases, and a general source of insights for breakthroughs in the treatment and prevention of multiple disorders. Finally, future directions to improve the dimensional and transdiagnostic assessment of interoception are outlined.


2021 ◽  
pp. 1-14
Author(s):  
Andreas RASCHE ◽  
Sandra WADDOCK

Abstract This article presents a review of the literature on the United Nations Guiding Principles (UNGPs) for the purpose of situating the UNGPs in the voluntary corporate social responsibility (CSR) infrastructure. We identify four key themes that underlie the debate: (1) a critical assessment of the UNGPs, (2) their application to different sectors, (3) a discussion of how to embed key aspects of the UNGPs into national and regional contexts, and (4) reflections on the role of due diligence. We discuss these themes and outline some practical and theoretical take-away messages. Our review highlights some similarities and differences to the discussion of voluntary initiatives in the field of CSR, especially the UN Global Compact. Our discussion helps to understand how the UNGPs are situated in the voluntary institutional infrastructure for CSR. Finally, we show how the theoretical and practical discourse on the UNGPs can be further advanced.


1944 ◽  
Vol 97 (1) ◽  
pp. 71-93 ◽  
Author(s):  
Natalie M. Gidge ◽  
S. Meryl Rose
Keyword(s):  

2016 ◽  
Vol 129 (1) ◽  
pp. 276-280
Author(s):  
Kaoru Nomura ◽  
Yasushi Tanimoto ◽  
Fumio Hayashi ◽  
Erisa Harada ◽  
Xiao-Yuan Shan ◽  
...  

1999 ◽  
Vol 77 (11) ◽  
pp. 1835-1837 ◽  
Author(s):  
Steven R Scadding

While the effects of exogenous retinoids on amphibian limb regeneration have been studied extensively, the role of endogenous retinoids is not clear. Hence, I wished to investigate the role of endogenous retinoic acid during axolotl limb regeneration. Citral is a known inhibitor of retinoic acid synthesis. Thus, I treated regenerating limbs of the larval axolotl Ambystoma mexicanum with citral. The result of this inhibition of retinoic acid synthesis was that limb regeneration became extremely irregular and hypomorphic, with serious pattern defects, or was inhibited altogether. I conclude that endogenous retinoic acid plays an important role in pattern formation during limb regeneration.


Sign in / Sign up

Export Citation Format

Share Document