Lateral Cyclic Loading Experiment of Aramid FRP Reinforced Non-seismic Detailed RC Column

Author(s):  
Lee Taehun ◽  
Kim Sunhee ◽  
Rho Kwanggun ◽  
Choi Sungmo ◽  
Yang Ilseung
Keyword(s):  
2012 ◽  
Vol 36 ◽  
pp. 325-336 ◽  
Author(s):  
Hong-Gun Park ◽  
Hyeon-Jong Hwang ◽  
Cheol-Ho Lee ◽  
Chang-Hee Park ◽  
Chang-Nam Lee

2011 ◽  
Vol 374-377 ◽  
pp. 2041-2045
Author(s):  
Jing Wu ◽  
Fa Zhou Wang ◽  
Yue Li ◽  
Wen Yang ◽  
Shu Guang Hu

On the premise of maintaining certain vertical bearing capacity, the frame structure dissipates seismic energy by elastic-plastic deformation in elastic-plastic stage of earthquake action. Using lightweight concrete in structure not only can reduce the its dead weight, decrease the earthquake power; also meet the concrete strength, stiffness and elastic modulus requirements of important structure, so as to improve its energy dissipation capacity. This paper researched the effect of concrete materials, including or such as C60 high strength Lightweight concrete (HSLC), high strength concrete (HSC) and high strength Light weight aggregate concrete (HSLAC), on the seismic behavior of RC column under horizontal low cyclic loading, respectively and the match relationship between concrete and steel reinforcement cage was analyzed.


2016 ◽  
Author(s):  
Li Fu ◽  
Hikaru Nakamura ◽  
Hiroki Furuhashi ◽  
Yoshihito Yamamoto ◽  
Taito Miura

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3542
Author(s):  
Jung-Hwan Hyun ◽  
Jin-Wook Bang ◽  
Bang-Yeon Lee ◽  
Yun-Yong Kim

This paper presents an experimental investigation on the effects of the replacement length of concrete with engineered cementitious composites (ECC) on the cyclic behavior of a reinforced concrete (RC) column. A conventional RC column specimen and two RC composite columns designed with ECC were fabricated. To investigate the cyclic behavior of each specimen, a series of cyclic loading tests was performed under a reversed cyclic loading condition with a constant axial load. Test results showed that ECC columns exhibited higher cyclic behavior in terms of load carrying capacity, ductility, and energy dissipation capacity compared to the RC column. It was also found that when applying ECC to the column specimen with a length of 3.6d or more, the energy dissipation capacity was greatly increased.


2020 ◽  
Vol 21 (5) ◽  
pp. 505
Author(s):  
Yousef Ghaderi Dehkordi ◽  
Ali Pourkamali Anaraki ◽  
Amir Reza Shahani

The prediction of residual stress relaxation is essential to assess the safety of welded components. This paper aims to study the influence of various effective parameters on residual stress relaxation under cyclic loading. In this regard, a 3D finite element modeling is performed to determine the residual stress in welded aluminum plates. The accuracy of this analysis is verified through experiment. To study the plasticity effect on stress relaxation, two plasticity models are implemented: perfect plasticity and combined isotropic-kinematic hardening. Hence, cyclic plasticity characterization of the material is specified by low cycle fatigue tests. It is found that the perfect plasticity leads to greater stress relaxation. In order to propose an accurate model to compute the residual stress relaxation, the Taguchi L18 array with four 3-level factors and one 6-level is employed. Using statistical analysis, the order of factors based on their effect on stress relaxation is determined as mean stress, stress amplitude, initial residual stress, and number of cycles. In addition, the stress relaxation increases with an increase in mean stress and stress amplitude.


Sign in / Sign up

Export Citation Format

Share Document