Experimental Research on Seismic Behavior of RC Column with Different Concrete under Horizontal Low Cyclic Loading

2011 ◽  
Vol 374-377 ◽  
pp. 2041-2045
Author(s):  
Jing Wu ◽  
Fa Zhou Wang ◽  
Yue Li ◽  
Wen Yang ◽  
Shu Guang Hu

On the premise of maintaining certain vertical bearing capacity, the frame structure dissipates seismic energy by elastic-plastic deformation in elastic-plastic stage of earthquake action. Using lightweight concrete in structure not only can reduce the its dead weight, decrease the earthquake power; also meet the concrete strength, stiffness and elastic modulus requirements of important structure, so as to improve its energy dissipation capacity. This paper researched the effect of concrete materials, including or such as C60 high strength Lightweight concrete (HSLC), high strength concrete (HSC) and high strength Light weight aggregate concrete (HSLAC), on the seismic behavior of RC column under horizontal low cyclic loading, respectively and the match relationship between concrete and steel reinforcement cage was analyzed.

2012 ◽  
Vol 193-194 ◽  
pp. 1405-1413 ◽  
Author(s):  
Zhu Ling Yan ◽  
Bao Long Cui ◽  
Ke Zhang

This paper conducts analysis on beam-column extended end-plate semi-rigid connection joint concerning monotonic loading and cyclic loading of finite element through ANSYS program, mainly discussed the influence of parameters such as the form of end plate stiffening rib on anti-seismic performance of joint.


2002 ◽  
Vol 29 (2) ◽  
pp. 191-200 ◽  
Author(s):  
M Alavi-Fard ◽  
H Marzouk

Structures located in seismic zones require significant ductility. It is necessary to examine the bond slip characteristics of high strength concrete under cyclic loading. The cyclic bond of high strength concrete is investigated under different parameters, including load history, confining reinforcement, bar diameter, concrete strength, and the rate of pull out. The bond strength, cracking, and deformation are highly dependent on the bond slip behavior between the rebar and the concrete under cyclic loading. The results of cyclic testing indicate that an increase in cyclic displacement will lead to more severe bond damage. The slope of the bond stress – displacement curve can describe the influence of the rate of loading on the bond strength in a cyclic test. Specimens with steel confinement sustained a greater number of cycles than the specimens without steel confinement. It has been found that the maximum bond strength increases with an increase in concrete strength. Cyclic loading does not affect the bond strength of high strength concrete as long as the cyclic slip is less than the maximum slip for monotonic loading. The behavior of high strength concrete under a cyclic load is slightly different from that of normal strength concrete.Key words: bond, high strength, cyclic loading, bar spacing, loading rate, failure mechanism.


2012 ◽  
Vol 610-613 ◽  
pp. 573-576
Author(s):  
Zheng Jun Wang ◽  
Jia Bin Liang

This paper discusses the development of water-reducing agent and the present situation of the application of high performance concrete. The traditional concrete will be substituted by high performance concrete, green concrete. In the course of appearance of high performance and green, concrete admixtures plays an extremely important role. Concrete water-reducing agent is admixture of the main part. In the case of keeping liquidity, it can make water consumption reduce, so the concrete strength and durability can be improved. It is applicable to all kinds of industrial and civil construction engineering, and it can be applied to different strength grade of concrete. It has important significance for mass concrete engineering, marine building facilities, and component and product of high strength lightweight concrete.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Lei Zeng ◽  
Zhenkun Cui ◽  
Yunfeng Xiao ◽  
Siqian Jin ◽  
Yuanyuan Wu

This paper presents an application of high strength concrete to concrete-encased composite frame building based on an experimental program. The work emphasized joints behavior under reverse cyclic loading caused by earthquakes to provide information for seismic design. To investigate the internal mechanisms and seismic performance, cyclic loading tests were carried out on five half-scale interior joints. Two design variables were addressed in the research: concrete strength and axial column load. Frame joints performance including crack pattern, failure mode, deformation, ductility, strain distribution, and energy dissipation capacity was investigated. It was found that all joint specimens behaved in a manner with joint panel shear failure. Using high strength concrete increased the joint strength and had relatively little effect on the stiffness and ductility. The axial column load helped the joint strength by better mobilizing the outer part of the joint, but it had an obvious influence on the ductility and energy-dissipating capacity, which can be improved by providing enough transverse reinforcement. A typical crack pattern was also provided which can well reflect mechanical character and damage process. This research should contribute to the future engineering applications of high strength concrete to concrete-encased composite structure.


2019 ◽  
Vol 9 (3) ◽  
pp. 373
Author(s):  
Deokhee Won ◽  
Seungjun Kim ◽  
Jihye Seo ◽  
and Young-Jong Kang

This paper presents an experimental study of the behavior of a steel-composite hollow reinforced concrete (RC) column under concentric loading. The effects of important variables, such as concrete strength, inner tube thickness, hollow ratio, column diameter, and transverse reinforcement space, are presented in this study. The failure of composite hollow RC columns is characterized by the formation of an inclined shear sliding plane. When the column had a highly confined effect, the inclination of the shear sliding plane was 45°. This study shows that the required performance is achieved when the splice providing transverse reinforcement is fully bonded. Furthermore, the inner tube experiences buckling failure after reaching its maximum strength. The steel-composite hollow RC column with high-strength concrete (HSC) has lower ductility and toughness compared to a column with normal-strength concrete (NSC).


1986 ◽  
Vol 13 (6) ◽  
pp. 741-751 ◽  
Author(s):  
R. Basset ◽  
S. M. Uzumeri

This paper summarizes an experimental investigation into the behaviour of high strength sand – lightweight concrete columns confined with rectangular ties. Fifteen reinforced and three unreinforced specimens were tested under monotonically increasing axial compression. Variables considered in this study were the longitudinal steel distribution and tie configuration, the tie steel spacing, the amount of tie steel, and the amount of longitudinal steel.The results indicated that unconfined high-strength lightweight aggregate concrete is a brittle material. The addition of lateral confining steel significantly improved the behaviour of this material, with a large amount of lateral steel resulting in very ductile behaviour. The tie configuration and resulting distribution of longitudinal steel contributed significantly to the confinement of concrete, with well-distributed steel resulting in improved behaviour. The ratio of specimen to cylinder concrete strength was observed to be 0.98, which is much higher than the commonly assumed value of 0.85.The test results were compared with results from selected theoretical confinement models. Based on the results of this investigation, existing models for concrete confinement give unconservative results for high-strength lightweight aggregate concrete and overestimate the ductility that can be achieved with this material. Key words: columns, confinement, ductility, high-strength concretes, lightweight aggregate concretes, reinforcement, stress–strain relationships, tests, ties, toughness.


2009 ◽  
Vol 36 (4) ◽  
pp. 565-579 ◽  
Author(s):  
Patrick Paultre ◽  
Denis Mitchell

This paper presents the background experimental and analytical research that was carried out to develop the provisions for the seismic design of high-strength concrete structures in the 2004 Canadian standard CSA A23.3–04. It is noted that the 1994 Canadian standard CSA A23.3–94 limited the concrete compressive strength to 55 MPa for the seismic design of nominally ductile and ductile structures, while the 1995 New Zealand Standard limited the concrete compressive strength to 70 MPa. In contrast, the 2008 American Concrete Institute (ACI) code ACI 318M has no upper limit on concrete strength, even for the seismic design of ductile structural elements. This tremendous variation in these limits indicated that more experimental evidence was needed. This paper presents experimental results of reversed cyclic loading tests on large-scale structural components as well as simulated seismic loading tests of a frame structure constructed with high-strength concrete. The goal of this collaborative research program at the University of Sherbrooke and McGill University was to determine the seismic design and detailing requirements for high-strength concrete structures to achieve the desired level of ductility and energy dissipation. The experimental programs include full-scale testing of the following: columns subjected to a pure axial load (square and circular columns); columns subjected to flexure and axial loads; beam-column subassemblages (square and circular columns); coupling beams in coupled wall structures; shear walls and a two-storey, three-dimensional frame structure. The results of the responses of the high-strength concrete structural specimens are compared with the responses of companion specimens constructed with normal-strength concrete.


2019 ◽  
Vol 23 (4) ◽  
pp. 614-629
Author(s):  
Shaohua Zhang ◽  
Xizhi Zhang ◽  
Shengbo Xu ◽  
Xingqian Li

This study reports the cyclic loading test results of normal-strength concrete-filled precast high-strength concrete centrifugal tube columns. Seven half-scale column specimens were tested under cyclic loads and axial compression loads to investigate their seismic behavior. The major parameters considered in the test included axial compression ratio, filled concrete strength, and volumetric stirrup ratio. The structural behavior of each specimen was investigated in terms of failure modes, hysteresis behavior, bearing capacity, dissipated energy, ductility, stiffness degradation, drift capacity, and strain profiles. Test results revealed that the concrete-filled precast high-strength concrete centrifugal tube column exhibited good integral behavior, and the failure modes of all columns were ductile flexural failures. Lower axial compression ratio and higher volumetric stirrup ratio resulted in more satisfactory ductile performance. In contrast, the filled concrete strength has a limited influence on the structural behavior of concrete-filled precast high-strength concrete centrifugal tube columns. Based on the limit analysis method, the calculation formula for the bending capacity of the concrete-filled precast high-strength concrete centrifugal tube column was developed, and the results predicted from the formulas were in good agreement with the experiment results.


Sign in / Sign up

Export Citation Format

Share Document