scholarly journals Phylogenomic analyses of deep gastropod relationships reject Orthogastropoda

2014 ◽  
Author(s):  
Felipe Zapata ◽  
Nerida G. Wilson ◽  
Mark Howison ◽  
Sónia CS Andrade ◽  
Katharina M. Jörger ◽  
...  

Gastropods are a highly diverse clade of molluscs that includes many familiar animals, such as limpets, snails, slugs, and sea slugs. It is one of the most abundant groups of animals in the sea and the only molluscan lineage that has successfully colonised land. Yet the relationships among and within its constituent clades have remained in flux for over a century of morphological, anatomical and molecular study. Here we re-evaluate gastropod phylogenetic relationships by collecting new transcriptome data for 40 species and analysing them in combination with publicly available genomes and transcriptomes. Our datasets include all five main gastropod clades: Patellogastropoda, Vetigastropoda, Neritimorpha, Caenogastropoda and Heterobranchia. We use two different methods to assign orthology, subsample each of these matrices into three increasingly dense subsets, and analyse all six of these supermatrices with two different models of molecular evolution. All twelve analyses yield the same unrooted network connecting the five major gastropod lineages. This reduces deep gastropod phylogeny to three alternative rooting hypotheses. These results reject the prevalent hypothesis of gastropod phylogeny, Orthogastropoda. Our dated tree is congruent with a possible end-Permian recovery of some gastropod clades, namely Caenogastropoda and some Heterobranchia subclades.

2014 ◽  
Vol 281 (1794) ◽  
pp. 20141739 ◽  
Author(s):  
Felipe Zapata ◽  
Nerida G. Wilson ◽  
Mark Howison ◽  
Sónia C. S. Andrade ◽  
Katharina M. Jörger ◽  
...  

Gastropods are a highly diverse clade of molluscs that includes many familiar animals, such as limpets, snails, slugs and sea slugs. It is one of the most abundant groups of animals in the sea and the only molluscan lineage that has successfully colonized land. Yet the relationships among and within its constituent clades have remained in flux for over a century of morphological, anatomical and molecular study. Here, we re-evaluate gastropod phylogenetic relationships by collecting new transcriptome data for 40 species and analysing them in combination with publicly available genomes and transcriptomes. Our datasets include all five main gastropod clades: Patellogastropoda, Vetigastropoda, Neritimorpha, Caenogastropoda and Heterobranchia. We use two different methods to assign orthology, subsample each of these matrices into three increasingly dense subsets, and analyse all six of these supermatrices with two different models of molecular evolution. All 12 analyses yield the same unrooted network connecting the five major gastropod lineages. This reduces deep gastropod phylogeny to three alternative rooting hypotheses. These results reject the prevalent hypothesis of gastropod phylogeny, Orthogastropoda. Our dated tree is congruent with a possible end-Permian recovery of some gastropod clades, namely Caenogastropoda and some Heterobranchia subclades.


2015 ◽  
Author(s):  
Felipe Zapata ◽  
Freya E Goetz ◽  
Stephen A Smith ◽  
Mark Howison ◽  
Stefan Siebert ◽  
...  

Cnidaria, the sister group to Bilateria, is a highly diverse group of animals in terms of morphology, lifecycles, ecology, and development. How this diversity originated and evolved is not well understood because phylogenetic relationships among major cnidarian lineages are unclear, and recent studies present contrasting phylogenetic hypotheses. Here, we use transcriptome data from 15 newly-sequenced species in combination with 26 publicly available genomes and transcriptomes to assess phylogenetic relationships among major cnidarian lineages. Phylogenetic analyses using different partition schemes and models of molecular evolution, as well as topology tests for alternative phylogenetic relationships, support the monophyly of Medusozoa, Anthozoa, Octocorallia, Hydrozoa, and a clade consisting of Staurozoa, Cubozoa, and Scyphozoa. Support for the monophyly of Hexacorallia is weak due to the equivocal position of Ceriantharia. Taken together, these results further resolve deep cnidarian relationships, largely support traditional phylogenetic views on relationships, and provide a historical framework for studying the evolutionary processes involved in one of the most ancient animal radiations.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Dario Karmeinski ◽  
Karen Meusemann ◽  
Jessica A. Goodheart ◽  
Michael Schroedl ◽  
Alexander Martynov ◽  
...  

Abstract Background The soft-bodied cladobranch sea slugs represent roughly half of the biodiversity of marine nudibranch molluscs on the planet. Despite their global distribution from shallow waters to the deep sea, from tropical into polar seas, and their important role in marine ecosystems and for humans (as targets for drug discovery), the evolutionary history of cladobranch sea slugs is not yet fully understood. Results To enlarge the current knowledge on the phylogenetic relationships, we generated new transcriptome data for 19 species of cladobranch sea slugs and two additional outgroup taxa (Berthella plumula and Polycera quadrilineata). We complemented our taxon sampling with previously published transcriptome data, resulting in a final data set covering 56 species from all but one accepted cladobranch superfamilies. We assembled all transcriptomes using six different assemblers, selecting those assemblies that provided the largest amount of potentially phylogenetically informative sites. Quality-driven compilation of data sets resulted in four different supermatrices: two with full coverage of genes per species (446 and 335 single-copy protein-coding genes, respectively) and two with a less stringent coverage (667 genes with 98.9% partition coverage and 1767 genes with 86% partition coverage, respectively). We used these supermatrices to infer statistically robust maximum-likelihood trees. All analyses, irrespective of the data set, indicate maximal statistical support for all major splits and phylogenetic relationships at the family level. Besides the questionable position of Noumeaella rubrofasciata, rendering the Facelinidae as polyphyletic, the only notable discordance between the inferred trees is the position of Embletonia pulchra. Extensive testing using Four-cluster Likelihood Mapping, Approximately Unbiased tests, and Quartet Scores revealed that its position is not due to any informative phylogenetic signal, but caused by confounding signal. Conclusions Our data matrices and the inferred trees can serve as a solid foundation for future work on the taxonomy and evolutionary history of Cladobranchia. The placement of E. pulchra, however, proves challenging, even with large data sets and various optimization strategies. Moreover, quartet mapping results show that confounding signal present in the data is sufficient to explain the inferred position of E. pulchra, again leaving its phylogenetic position as an enigma.


2020 ◽  
Author(s):  
Dario Karmeinski ◽  
Karen Meusemann ◽  
Jessica A. Goodheart ◽  
Michael Schroedl ◽  
Alexander Martynov ◽  
...  

AbstractBackgroundCladobranch sea slugs represent roughly half of the biodiversity of soft-bodied, marine gastropod molluscs (Nudibranchia) on the planet. Despite their global distribution from shallow waters to the deep sea, from tropical into polar seas, and their important role in marine ecosystems and for humans (as bioindicators and providers of medical drug leads), the evolutionary history of cladobranch sea slugs is not yet fully understood. Here, we amplify the current knowledge on the phylogenetic relationships by extending the cladobranch and outgroup taxon sampling using transcriptome data.ResultsWe generated new transcriptome data for 19 species of cladobranch sea slugs and two additional outgroup taxa. We complemented our taxon sampling with previously published transcriptome data, resulting in a final supermatrix covering 56 species from all but one accepted cladobranch superfamilies. Transcriptome assembly using six different assemblers, selection of those assemblies providing the largest amount of potentially phylogenetically informative sites, and quality-driven compilation of data sets resulted in three different supermatrices: one with a full coverage of genes per species (446 single-copy protein-coding genes) and two with a less stringent coverage (667 genes with 98.9% partition coverage and 1,767 genes with 86% partition coverage, respectively). We used these supermatrices to infer statistically robust maximum-likelihood trees. All analyses, irrespective of the data set, indicate maximum statistical support for all major splits and phylogenetic relationships on family level. The only discordance between the inferred trees is the position of Embletonia pulchra. Extensive testing using Four-cluster Likelihood Mapping, Approximately Unbiased tests, and Quartet Scores revealed that its position is not due to any informative phylogenetic signal, but caused by confounding signal.ConclusionsOur data matrices and the inferred trees inferred can serve as a solid foundation for future work on the taxonomy and evolutionary history of Cladobranchia. The correct placement of E. pulchra, however, proves challenging, even with large data sets. Moreover, quartet mapping shows that confounding signal present in the data is sufficient to explain the inferred position of E. pulchra, again leaving its phylogenetic position as an enigma.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Maria Alejandra Serna-Sánchez ◽  
Oscar A. Pérez-Escobar ◽  
Diego Bogarín ◽  
María Fernanda Torres-Jimenez ◽  
Astrid Catalina Alvarez-Yela ◽  
...  

AbstractRecent phylogenomic analyses based on the maternally inherited plastid organelle have enlightened evolutionary relationships between the subfamilies of Orchidaceae and most of the tribes. However, uncertainty remains within several subtribes and genera for which phylogenetic relationships have not ever been tested in a phylogenomic context. To address these knowledge-gaps, we here provide the most extensively sampled analysis of the orchid family to date, based on 78 plastid coding genes representing 264 species, 117 genera, 18 tribes and 28 subtribes. Divergence times are also provided as inferred from strict and relaxed molecular clocks and birth–death tree models. Our taxon sampling includes 51 newly sequenced plastid genomes produced by a genome skimming approach. We focus our sampling efforts on previously unplaced clades within tribes Cymbidieae and Epidendreae. Our results confirmed phylogenetic relationships in Orchidaceae as recovered in previous studies, most of which were recovered with maximum support (209 of the 262 tree branches). We provide for the first time a clear phylogenetic placement for Codonorchideae within subfamily Orchidoideae, and Podochilieae and Collabieae within subfamily Epidendroideae. We also identify relationships that have been persistently problematic across multiple studies, regardless of the different details of sampling and genomic datasets used for phylogenetic reconstructions. Our study provides an expanded, robust temporal phylogenomic framework of the Orchidaceae that paves the way for biogeographical and macroevolutionary studies.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 456 ◽  
Author(s):  
Cornelius M. Kyalo ◽  
Zhi-Zhong Li ◽  
Elijah M. Mkala ◽  
Itambo Malombe ◽  
Guang-Wan Hu ◽  
...  

Streptocarpus ionanthus (Gesneriaceae) comprise nine herbaceous subspecies, endemic to Kenya and Tanzania. The evolution of Str. ionanthus is perceived as complex due to morphological heterogeneity and unresolved phylogenetic relationships. Our study seeks to understand the molecular variation within Str. ionanthus using a phylogenomic approach. We sequence the chloroplast genomes of five subspecies of Str. ionanthus, compare their structural features and identify divergent regions. The five genomes are identical, with a conserved structure, a narrow size range (170 base pairs (bp)) and 115 unique genes (80 protein-coding, 31 tRNAs and 4 rRNAs). Genome alignment exhibits high synteny while the number of Simple Sequence Repeats (SSRs) are observed to be low (varying from 37 to 41), indicating high similarity. We identify ten divergent regions, including five variable regions (psbM, rps3, atpF-atpH, psbC-psbZ and psaA-ycf3) and five genes with a high number of polymorphic sites (rps16, rpoC2, rpoB, ycf1 and ndhA) which could be investigated further for phylogenetic utility in Str. ionanthus. Phylogenomic analyses here exhibit low polymorphism within Str. ionanthus and poor phylogenetic separation, which might be attributed to recent divergence. The complete chloroplast genome sequence data concerning the five subspecies provides genomic resources which can be expanded for future elucidation of Str. ionanthus phylogenetic relationships.


2001 ◽  
Vol 69 (10) ◽  
pp. 6303-6309 ◽  
Author(s):  
Ruiting Lan ◽  
Brad Lumb ◽  
David Ryan ◽  
Peter R. Reeves

ABSTRACT Three genes, ipgD, mxiC, and mxiA,all in the invasion region of the Shigella virulence plasmid, were sequenced from strains representing a range ofShigella serotypes and from two enteroinvasiveEscherichia coli (EIEC) isolates. The plasmids can be classified into two relatively homogeneous sequence forms which are quite distinct. pINV A plasmids are found in Shigella flexneri strains F6 and F6A, S. boydii strains B1, B4, B9, B10, B14, and B15, S. dysenteriae strains D3, D4, D6, D8, D9, D10, and D13, and the two EIEC strains (M519 and M520). pINV B plasmids are present in S. flexneristrains F1A, F2A, F3A, F3C, F4A, and FY, two S. boydiistrains (B11 and B12), and S. sonnei. The D1 pINV plasmid is a recombinant with ipgD gene more closely related to those of pINV A but with mxiA andmxiC genes more closely related to those of pINV B. The phylogenetic relationships of the plasmid and those of the chromosomal genes of Shigella strains are largely consistent. The cluster 1 and cluster 3 strains tested (G.M. Pupo, R. Lan, and P. R. Reeves, Proc. Natl. Acad. Sci. USA 97:10567–10572, 2000) have pINV A and pINV B plasmids, respectively. However, of the three cluster 2 strains (B9, B11, and B15), B9 and B15 have pINV A while B11 has a pINV B plasmid. Those Shigella (D8 and D10 and S. sonnei) and EIEC strains which do not group with the main body of Shigella strains based on chromosomal genes were found to have plasmids belonging to one or the other of the two types and must have acquired these by lateral transfer.


Sign in / Sign up

Export Citation Format

Share Document