scholarly journals Concerning RNA-Guided Gene Drives for the Alteration of Wild Populations

2014 ◽  
Author(s):  
Kevin M Esvelt ◽  
Andrea L Smidler ◽  
Flaminia Catteruccia ◽  
George M Church

Gene drives may be capable of addressing ecological problems by altering entire populations of wild organisms, but their use has remained largely theoretical due to technical constraints. Here we consider the potential for RNA-guided gene drives based on the CRISPR nuclease Cas9 to serve as a general method for spreading altered traits through wild populations over many generations. We detail likely capabilities, discuss limitations, and provide novel precautionary strategies to control the spread of gene drives and reverse genomic changes. The ability to edit populations of sexual species would offer substantial benefits to humanity and the environment. For example, RNA-guided gene drives could potentially prevent the spread of disease, support agriculture by reversing pesticide and herbicide resistance in insects and weeds, and control damaging invasive species. However, the possibility of unwanted ecological effects and near-certainty of spread across political borders demand careful assessment of each potential application. We call for thoughtful, inclusive, and well-informed public discussions to explore the responsible use of this currently theoretical technology.

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Kevin M Esvelt ◽  
Andrea L Smidler ◽  
Flaminia Catteruccia ◽  
George M Church

Gene drives may be capable of addressing ecological problems by altering entire populations of wild organisms, but their use has remained largely theoretical due to technical constraints. Here we consider the potential for RNA-guided gene drives based on the CRISPR nuclease Cas9 to serve as a general method for spreading altered traits through wild populations over many generations. We detail likely capabilities, discuss limitations, and provide novel precautionary strategies to control the spread of gene drives and reverse genomic changes. The ability to edit populations of sexual species would offer substantial benefits to humanity and the environment. For example, RNA-guided gene drives could potentially prevent the spread of disease, support agriculture by reversing pesticide and herbicide resistance in insects and weeds, and control damaging invasive species. However, the possibility of unwanted ecological effects and near-certainty of spread across political borders demand careful assessment of each potential application. We call for thoughtful, inclusive, and well-informed public discussions to explore the responsible use of this currently theoretical technology.


2015 ◽  
Author(s):  
James E DiCarlo ◽  
Alejandro Chavez ◽  
Sven L Dietz ◽  
Kevin M Esvelt ◽  
George M Church

Inheritance-biasing “gene drives” may be capable of spreading genomic alterations made in laboratory organisms through wild populations. We previously considered the potential for RNA-guided gene drives based on the versatile CRISPR/Cas9 genome editing system to serve as a general method of altering populations. Here we report molecularly contained gene drive constructs in the yeast Saccharomyces cerevisiae that are typically copied at rates above 99% when mated to wild yeast. We successfully targeted both non-essential and essential genes, showed that the inheritance of an unrelated “cargo” gene could be biased by an adjacent drive, and constructed a drive capable of overwriting and reversing changes made by a previous drive. Our results demonstrate that RNA-guided gene drives are capable of efficiently biasing inheritance when mated to wild-type organisms over successive generations.


EDIS ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 7
Author(s):  
Demian F. Gomez ◽  
Jiri Hulcr ◽  
Daniel Carrillo

Invasive species, those that are nonnative and cause economic damage, are one of the main threats to ecosystems around the world. Ambrosia beetles are some of the most common invasive insects. Currently, severe economic impacts have been increasingly reported for all the invasive shot hole borers in South Africa, California, Israel, and throughout Asia. This 7-page fact sheet written by Demian F. Gomez, Jiri Hulcr, and Daniel Carrillo and published by the School of Forest Resources and Conservation describes shot hole borers and their biology and hosts and lists some strategies for prevention and control of these pests. http://edis.ifas.ufl.edu/fr422


2016 ◽  
Vol 17 (3) ◽  
pp. 146-159 ◽  
Author(s):  
Jackson Champer ◽  
Anna Buchman ◽  
Omar S. Akbari
Keyword(s):  

2016 ◽  
Vol 37 (1) ◽  
pp. 131-136 ◽  
Author(s):  
Jean Secondi ◽  
Tony Dejean ◽  
Alice Valentini ◽  
Benjamin Audebaud ◽  
Claude Miaud

Detection is crucial in the study and control of invasive species but it may be limited by methodological issues. In amphibians, classical survey techniques exhibit variable detection probability depending on species and are often constrained by climatic conditions often requiring several site visits. Furthermore, detection may be reduced at low density because probability capture (passive traps), or activity (acoustic surveys) drop. Such limits may impair the study of invasive species because low density is typical of the onset of colonisation on a site. In the last few years, environmental DNA (eDNA) methods have proved their ability to detect the presence of aquatic species. We developed here an eDNA method to detectXenopus laevisin ponds. This austral African species is now present worldwide because of its use in biology and as a pet. Populations have settled and expanded on several continents so that it is now considered as one of the major invasive amphibians in the World. We detected the presence ofX. laevisat density as low as 1 ind/100 m2and found a positive relationship between density in ponds and rate of DNA amplification. Results show that eDNA can be successfully applied to survey invasive populations ofX. laeviseven at low density in order to confirm suspected cases of introduction, delimit the expansion of a colonized range, or monitor the efficiency of a control program.


2010 ◽  
Vol 47 (1) ◽  
pp. 106-113 ◽  
Author(s):  
Michelle T. Christy ◽  
Amy A. Yackel Adams ◽  
Gordon H. Rodda ◽  
Julie A. Savidge ◽  
Claudine L. Tyrrell

2017 ◽  
Vol 133 ◽  
pp. 86-98 ◽  
Author(s):  
Denys Yemshanov ◽  
Robert G. Haight ◽  
Frank H. Koch ◽  
Bo Lu ◽  
Robert Venette ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document