scholarly journals A cell-free framework for biological systems engineering

2015 ◽  
Author(s):  
Henrike Niederholtmeyer ◽  
Zachary Sun ◽  
Yutaka Hori ◽  
Enoch Yeung ◽  
Amanda Verpoorte ◽  
...  

While complex dynamic biological networks control gene expression and metabolism in all living organisms, engineering comparable synthetic networks remains challenging1,2. Conducting extensive, quantitative and rapid characterization during the design and implementation process of synthetic networks is currently severely limited due to cumbersome molecular cloning and the difficulties associated with measuring parts, components and systems in cellular hosts. Engineering gene networks in a cell-free environment promises to be an efficient and effective approach to rapidly develop novel biological systems and understand their operating regimes3-5. However, it remains questionable whether complex synthetic networks behave similarly in cells and a cell-free environment, which is critical for in vitro approaches to be of significance to biological engineering. Here we show that synthetic dynamic networks can be readily implemented, characterized, and engineered in a cell-free framework and consequently transferred to cellular hosts. We implemented and characterized the “repressilator”6, a three-node negative feedback oscillator in vitro. We then used our cell-free framework to engineer novel three-node, four-node, and five-node negative feedback architectures going from the characterization of circuit components to the rapid analysis of complete networks. We validated our cell-free approach by transferring these novel three-node and five-node oscillators to Escherichia coli, resulting in robust and synchronized oscillations reflecting the in vitro observation. We demonstrate that comprehensive circuit engineering can be performed in a cell-free system and that the in vitro results have direct applicability in vivo. Cell-free synthetic biology thus has the potential to drastically speed up design-build-test cycles in biological engineering and enable the quantitative characterization of synthetic and natural networks.

1989 ◽  
Vol 94 (3) ◽  
pp. 449-462
Author(s):  
J. Nakagawa ◽  
G.T. Kitten ◽  
E.A. Nigg

We describe a cell-free system for studying mitotic reorganization of nuclear structure. The system utilizes soluble extracts prepared from metaphase-arrested somatic chicken cells and supports both the disassembly and subsequent partial reassembly of exogenous nuclei. By fluorescence microscopy, biochemical fractionation, protein phosphorylation assays and electron microscopy, we show that chicken embryonic nuclei incubated in extracts prepared from metaphase-arrested chicken hepatoma cells undergo nuclear envelope breakdown, lamina depolymerization and chromatin condensation. These prophase-like events are strictly dependent on ATP and do not occur when nuclei are incubated in interphase extracts. Compared to interphase extracts, metaphase extracts show increased kinase activities toward a number of nuclear protein substrates, including lamins and histone H1; moreover, they specifically contain four soluble phosphoproteins of Mr 38,000, 75,000, 95,000 and 165,000. Following disassembly of exogenous nuclei in metaphase extracts, telophase-like reassembly of a nuclear lamina and re-formation of nuclear membranes around condensed chromatin can be induced by depletion of ATP from the extract. We anticipate that this reversible cell-free system will contribute to the identification and characterization of factors involved in regulatory and mechanistic aspects of mitosis.


1995 ◽  
Vol 108 (5) ◽  
pp. 2027-2035 ◽  
Author(s):  
N. Maus ◽  
N. Stuurman ◽  
P.A. Fisher

Stage 14 Drosophila oocytes are arrested in first meiotic metaphase. A cell-free extract of these oocytes catalyzes apparent disassembly of purified Drosophila nuclei as well as of nuclear lamin polymers formed in vitro from isolated interphase lamins. Biochemically, the oocyte extract catalyzes lamin solubilization and phosphorylation as well as characteristic changes in one- and two-dimensional gel mobility. A previously unidentified soluble lamin isoform is easily seen after in vitro disassembly. This isoform is detectable but present only in very small quantities in vivo and is apparently derived specifically from one of the two interphase lamin isoforms. Cell-free nuclear lamina disassembly is ATP-dependent and addition of calcium to extracts blocks disassembly as judged both morphologically and biochemically. This system will allow enzymological characterization of cell-free lamina disassembly as well as molecular analysis of specific Drosophila mutants.


1990 ◽  
Vol 68 (7-8) ◽  
pp. 1005-1011 ◽  
Author(s):  
C. A. Ketola-Pirie

Ferritin, an iron-sequestering and -binding protein, is localized to the vacuolar system in Calpodes ethlius larvae. The amount of iron-loaded ferritin in intact larval midgut can be increased by pretreatment with iron. When poly(A)+ RNA from control or iron-treated larvae was translated in vitro, a 24 kilodalton (kDa) protein was a major translation product. If the cell-free system was supplemented with dog pancreatic microsomes, the 24-kDa protein was not detectable: the major translation product was 28–30 kDa. The 24-kDa and 28- to 30-kDa proteins were identified as ferritin subunits by immunoprecipitation with anti-Manduca ferritin antibodies. Proteinase K digestion of the translation products showed that the 28- to 30-kDa subunit was targeted into the lumen of, and protected by, the microsomes. The change in molecular mass of the ferritin monomer was attributed to glycosylation of the 24-kDa subunit within the lumen of the microsomes. This was demonstrated by (i) the ability of the 28- to 30-kDa subunit, but not the 24-kDa subunit, to bind concanavalin A on Western blots and (ii) inhibition of the change in molecular mass from 24 to 28–30 kDa if tunicamycin is added to the microsomes. The results indicate that the Calpodes ferritin subunit was synthesized, targeted to microsomes, and glycosylated within their lumen in a rabbit reticulocyte cell-free system primed with midgut poly(A)+ RNA extracted from control or iron-treated larvae.Key words: insect ferritin, cell-free synthesis, glycosylation.


2018 ◽  
Author(s):  
Maiko Kitaoka ◽  
Rebecca Heald ◽  
Romain Gibeaux

ABSTRACTEgg extracts of the African clawed frog Xenopus laevis have provided a cell-free system instrumental in elucidating events of the cell cycle, including mechanisms of spindle assembly. Comparison with extracts from the diploid Western clawed frog, Xenopus tropicalis, which is smaller at the organism, cellular and subcellular levels, has enabled the identification of spindle size scaling factors. We set out to characterize the Marsabit clawed frog, Xenopus borealis, which is intermediate in size between the two species, but more recently diverged in evolution from X. laevis than X. tropicalis. X. borealis eggs were slightly smaller than those of X. laevis, and slightly smaller spindles were assembled in egg extracts. Interestingly, microtubule distribution across the length of the X. borealis spindles differed from both X. laevis and X. tropicalis. Extract mixing experiments revealed common scaling phenomena among Xenopus species, while characterization of spindle factors katanin, TPX2, and Ran indicate that X. borealis spindles possess both X. laevis and X. tropicalis features. Thus, X. borealis egg extract provides a third in vitro system to investigate interspecies scaling and spindle morphometric variation.


Author(s):  
Laetitia Trapp-Fragnet ◽  
Delphine Marie-Egyptienne ◽  
Johans Fakhoury ◽  
Denis Rasschaert ◽  
Chantal Autexier

AbstractThe minimal vertebrate telomerase enzyme is composed of a protein component (telomerase reverse transcriptase, TERT) and an RNA component (telomerase RNA, TR). Expression of these two subunits is sufficient to reconstitute telomerase activity in vitro, while the formation of a holoenzyme comprising telomerase-associated proteins is necessary for proper telomere length maintenance. Previous reports demonstrated the high processivity of the human telomerase complex and the interspecies compatibility of human TERT (hTERT). In this study, we tested the function of the only known viral telomerase RNA subunit (vTR) in association with human telomerase, both in a cell-free system and in human cells. When vTR is assembled with hTERT in a cell-free environment, it is able to interact with hTERT and to reconstitute telomerase activity. However, in human cells, vTR does not reconstitute telomerase activity and could not be detected in the human telomerase complex, suggesting that vTR is not able to interact properly with the proteins constituting the human telomerase holoenzyme.


2007 ◽  
Vol 403 (3) ◽  
pp. 451-461 ◽  
Author(s):  
Sandrine Pacquelet ◽  
Jennifer L. Johnson ◽  
Beverly A. Ellis ◽  
Agnieszka A. Brzezinska ◽  
William S. Lane ◽  
...  

Exposure of neutrophils to LPS (lipopolysaccharide) triggers their oxidative response. However, the relationship between the signalling downstream of TLR4 (Toll-like receptor 4) after LPS stimulation and the activation of the oxidase remains elusive. Phosphorylation of the cytosolic factor p47phox is essential for activation of the NADPH oxidase. In the present study, we examined the hypothesis that IRAK-4 (interleukin-1 receptor-associated kinase-4), the main regulatory kinase downstream of TLR4 activation, regulates the NADPH oxidase through phosphorylation of p47phox. We show that p47phox is a substrate for IRAK-4. Unlike PKC (protein kinase C), IRAK-4 phosphorylates p47phox not only at serine residues, but also at threonine residues. Target residues were identified by tandem MS, revealing a novel threonine-rich regulatory domain. We also show that p47phox is phosphorylated in granulocytes in response to LPS stimulation. LPS-dependent phosphorylation of p47phox was enhanced by the inhibition of p38 MAPK (mitogen-activated protein kinase), confirming that the kinase operates upstream of p38 MAPK. IRAK-4-phosphorylated p47phox activated the NADPH oxidase in a cell-free system, and IRAK-4 overexpression increased NADPH oxidase activity in response to LPS. We have shown that endogenous IRAK-4 interacts with p47phox and they co-localize at the plasma membrane after LPS stimulation, using immunoprecipitation assays and immunofluorescence microscopy respectively. IRAK-4 was activated in neutrophils in response to LPS stimulation. We found that Thr133, Ser288 and Thr356, targets for IRAK-4 phosphorylation in vitro, are also phosphorylated in endogenous p47phox after LPS stimulation. We conclude that IRAK-4 phosphorylates p47phox and regulates NADPH oxidase activation after LPS stimulation.


2018 ◽  
Vol 5 (4) ◽  
pp. 110 ◽  
Author(s):  
Kazusa Beppu ◽  
Ziane Izri ◽  
Yusuke Maeda ◽  
Ryota Sakamoto

As expressed “God made the bulk; the surface was invented by the devil” by W. Pauli, the surface has remarkable properties because broken symmetry in surface alters the material properties. In biological systems, the smallest functional and structural unit, which has a functional bulk space enclosed by a thin interface, is a cell. Cells contain inner cytosolic soup in which genetic information stored in DNA can be expressed through transcription (TX) and translation (TL). The exploration of cell-sized confinement has been recently investigated by using micron-scale droplets and microfluidic devices. In the first part of this review article, we describe recent developments of cell-free bioreactors where bacterial TX-TL machinery and DNA are encapsulated in these cell-sized compartments. Since synthetic biology and microfluidics meet toward the bottom-up assembly of cell-free bioreactors, the interplay between cellular geometry and TX-TL advances better control of biological structure and dynamics in vitro system. Furthermore, biological systems that show self-organization in confined space are not limited to a single cell, but are also involved in the collective behavior of motile cells, named active matter. In the second part, we describe recent studies where collectively ordered patterns of active matter, from bacterial suspensions to active cytoskeleton, are self-organized. Since geometry and topology are vital concepts to understand the ordered phase of active matter, a microfluidic device with designed compartments allows one to explore geometric principles behind self-organization across the molecular scale to cellular scale. Finally, we discuss the future perspectives of a microfluidic approach to explore the further understanding of biological systems from geometric and topological aspects.


2010 ◽  
Vol 17 (5) ◽  
pp. 784-792 ◽  
Author(s):  
R. Zichel ◽  
A. Mimran ◽  
A. Keren ◽  
A. Barnea ◽  
I. Steinberger-Levy ◽  
...  

ABSTRACT Botulinum toxins produced by the anaerobic bacterium Clostridium botulinum are the most potent biological toxins in nature. Traditionally, people at risk are immunized with a formaldehyde-inactivated toxin complex. Second generation vaccines are based on the recombinant carboxy-terminal heavy-chain (Hc) fragment of the neurotoxin. However, the materialization of this approach is challenging, mainly due to the high AT content of clostridial genes. Herein, we present an alternative strategy in which the native genes encoding Hc proteins of botulinum toxins A, B, and E were used to express the recombinant Hc fragments in a cell-free expression system. We used the unique property of this open system to introduce different combinations of chaperone systems, protein disulfide isomerase (PDI), and reducing/oxidizing environments directly to the expression reaction. Optimized expression conditions led to increased production of soluble Hc protein, which was successfully scaled up using a continuous exchange (CE) cell-free system. Hc proteins were produced at a concentration of more than 1 mg/ml and purified by one-step Ni+ affinity chromatography. Mice immunized with three injections containing 5 μg of any of the in vitro-expressed, alum-absorbed, Hc vaccines generated a serum enzyme-linked immunosorbent assay (ELISA) titer of 105 against the native toxin complex, which enabled protection against a high-dose toxin challenge (103 to 106 mouse 50% lethal dose [MsLD50]). Finally, immunization with a trivalent HcA, HcB, and HcE vaccine protected mice against the corresponding trivalent 105 MsLD50 toxin challenge. Our results together with the latest developments in scalability of the in vitro protein expression systems offer alternative routes for the preparation of botulinum vaccine.


Sign in / Sign up

Export Citation Format

Share Document