scholarly journals The discovery, distribution and evolution of viruses associated with Drosophila melanogaster

2015 ◽  
Author(s):  
Claire L Webster ◽  
Fergal M Waldron ◽  
Shaun Robertson ◽  
Daisy Crowson ◽  
Giada Ferrari ◽  
...  

Drosophila melanogaster is a valuable invertebrate model for viral infection and antiviral immunity, and is a focus for studies of insect-virus coevolution. Here we use a metagenomic approach to identify more than 20 previously undetected RNA viruses and a DNA virus associated with wild D. melanogaster. These viruses not only include distant relatives of known insect pathogens, but also novel groups of insect-infecting viruses. By sequencing virus-derived small RNAs we show that the viruses represent active infections of Drosophila. We find that the RNA viruses differ in the number and properties of their small RNAs, and we detect both siRNAs and a novel miRNA from the DNA virus. Analysis of small RNAs also allows us to identify putative viral sequences that lack detectable sequence similarity to known viruses. By surveying >2000 individually collected wild adult Drosophila we show that more than 30% of D. melanogaster carry a detectable virus, and more than 6% carry multiple viruses. However, despite a high prevalence of the Wolbachia endosymbiont—which is known to be protective against virus infections in Drosophila—we were unable to detect any relationship between the presence of Wolbachia and the presence of any virus. Using publicly available RNA-seq datasets we show that the community of viruses in Drosophila laboratories is very different from that seen in the wild, but that some of the newly discovered viruses are nevertheless widespread in laboratory lines and are ubiquitous in cell culture. By sequencing viruses from individual wild-collected flies we show that some viruses are shared between D. melanogaster and D. simulans. Our results provide an essential evolutionary and ecological context for host-virus interaction in Drosophila, and the newly reported viral sequences will help develop D. melanogaster further as a model for molecular and evolutionary virus research.

Viruses ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 48 ◽  
Author(s):  
Anne-Lie Blomström ◽  
Hermes R. Luz ◽  
Pontus Öhlund ◽  
Matthew Lukenge ◽  
Paulo Eduardo Brandão ◽  
...  

In this study, we describe the viral composition of adult Antricola delacruzi ticks collected in a hot bat cave in the state of Rondônia, Western Amazonia, Brazil. A. delacruzi ticks, are special, compared to many other ticks, in that they feed on both bats (larval blood feeding) and bat guano (nymphal and adult feeding) instead of feeding exclusively on vertebrate hosts (blood feeding). Considering this unique life-cycle it is potentially possible that these ticks can pick up/be infected by viruses not only present in the blood of viremic bats but also by virus shed through the bat guano. The viral metagenomic investigation of adult ticks showed that single-stranded negative-sense RNA viruses were the dominant group of viruses identified in the investigated ticks. Out of these, members of the Nairoviridae family were in clear majority constituting 88% of all viral reads in the data set. Genetic and phylogenetic analyses indicate the presence of several different orthonairoviruses in the investigated ticks with only distant relationship to previously described ones. In addition, identification of viral sequences belonging to Orthomyxoviridae, Iflaviridae, Dicistroviridae, Polycipiviridae, Reoviridae and different unclassified RNA viruses showed the presence of viruses with low sequence similarity to previously described viruses.


2018 ◽  
Vol 93 (3) ◽  
Author(s):  
William H. Palmer ◽  
Joep Joosten ◽  
Gijs J. Overheul ◽  
Pascal W. Jansen ◽  
Michiel Vermeulen ◽  
...  

ABSTRACTInteractions between the insect immune system and RNA viruses have been extensively studied inDrosophila, in which RNA interference, NF-κB, and JAK-STAT pathways underlie antiviral immunity. In response to RNA interference, insect viruses have convergently evolved suppressors of this pathway that act by diverse mechanisms to permit viral replication. However, interactions between the insect immune system and DNA viruses have received less attention, primarily because fewDrosophila-infecting DNA virus isolates are available. In this study, we used a recently isolated DNA virus ofDrosophila melanogaster, Kallithea virus (KV; familyNudiviridae), to probe known antiviral immune responses and virus evasion tactics in the context of DNA virus infection. We found that fly mutants for RNA interference and immune deficiency (Imd), but not Toll, pathways are more susceptible to Kallithea virus infection. We identified the Kallithea virus-encoded protein gp83 as a potent inhibitor of Toll signalling, suggesting that Toll mediates antiviral defense against Kallithea virus infection but that it is suppressed by the virus. We found that Kallithea virus gp83 inhibits Toll signalling through the regulation of NF-κB transcription factors. Furthermore, we found that gp83 of the closely related Drosophila innubila nudivirus (DiNV) suppressesD. melanogasterToll signalling, suggesting an evolutionarily conserved function of Toll in defense against DNA viruses. Together, these results provide a broad description of known antiviral pathways in the context of DNA virus infection and identify the first Toll pathway inhibitor in aDrosophilavirus, extending the known diversity of insect virus-encoded immune inhibitors.IMPORTANCECoevolution of multicellular organisms and their natural viruses may lead to an intricate relationship in which host survival requires effective immunity and virus survival depends on evasion of such responses. Insect antiviral immunity and reciprocal virus immunosuppression tactics have been well studied inDrosophila melanogaster, primarily during RNA, but not DNA, virus infection. Therefore, we describe interactions between a recently isolatedDrosophilaDNA virus (Kallithea virus [KV]) and immune processes known to control RNA viruses, such as RNA interference (RNAi) and Imd pathways. We found that KV suppresses the Toll pathway and identified gp83 as a KV-encoded protein that underlies this suppression. This immunosuppressive ability is conserved in another nudivirus, suggesting that the Toll pathway has conserved antiviral activity against DNA nudiviruses, which have evolved suppressors in response. Together, these results indicate that DNA viruses induce and suppress NF-κB responses, and they advance the application of KV as a model to study insect immunity.


Pathogens ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 574
Author(s):  
Evanthia Xylogianni ◽  
Paolo Margaria ◽  
Dennis Knierim ◽  
Kyriaki Sareli ◽  
Stephan Winter ◽  
...  

Field surveys were conducted in Greek olive orchards from 2017 to 2020 to collect information on the sanitary status of the trees. Using a high-throughput sequencing approach, viral sequences were identified in total RNA extracts from several trees and assembled to reconstruct the complete genomes of two isolates of a new viral species of the genus Tepovirus (Betaflexiviridae), for which the name olive virus T (OlVT) is proposed. A reverse transcription–polymerase chain reaction assay was developed which detected OlVT in samples collected in olive growing regions in Central and Northern Greece, showing a virus prevalence of 4.4% in the olive trees screened. Sequences of amplified fragments from the movement–coat protein region of OlVT isolates varied from 75.64% to 99.35%. Three olive varieties (Koroneiki, Arbequina and Frantoio) were infected with OlVT via grafting to confirm a graft-transmissible agent, but virus infections remained latent. In addition, cucumber mosaic virus, olive leaf yellowing-associated virus and cherry leaf roll virus were identified.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 313
Author(s):  
Heli A. M. Mönttinen ◽  
Janne J. Ravantti ◽  
Minna M. Poranen

RNA viruses are the fastest evolving known biological entities. Consequently, the sequence similarity between homologous viral proteins disappears quickly, limiting the usability of traditional sequence-based phylogenetic methods in the reconstruction of relationships and evolutionary history among RNA viruses. Protein structures, however, typically evolve more slowly than sequences, and structural similarity can still be evident, when no sequence similarity can be detected. Here, we used an automated structural comparison method, homologous structure finder, for comprehensive comparisons of viral RNA-dependent RNA polymerases (RdRps). We identified a common structural core of 231 residues for all the structurally characterized viral RdRps, covering segmented and non-segmented negative-sense, positive-sense, and double-stranded RNA viruses infecting both prokaryotic and eukaryotic hosts. The grouping and branching of the viral RdRps in the structure-based phylogenetic tree follow their functional differentiation. The RdRps using protein primer, RNA primer, or self-priming mechanisms have evolved independently of each other, and the RdRps cluster into two large branches based on the used transcription mechanism. The structure-based distance tree presented here follows the recently established RdRp-based RNA virus classification at genus, subfamily, family, order, class and subphylum ranks. However, the topology of our phylogenetic tree suggests an alternative phylum level organization.


2009 ◽  
Vol 277 (1683) ◽  
pp. 963-969 ◽  
Author(s):  
Katie E. Marshall ◽  
Brent J. Sinclair

While insect cold tolerance has been well studied, the vast majority of work has focused on the effects of a single cold exposure. However, many abiotic environmental stresses, including temperature, fluctuate within an organism's lifespan. Given that organisms may trade-off survival at the cost of future reproduction, we investigated the effects of multiple cold exposures on survival and fertility in the model organism Drosophila melanogaster . We found that multiple cold exposures significantly decreased mortality compared with the same length of exposure in a single sustained bout, but significantly decreased fecundity (as measured by r , the intrinsic rate of increase) as well, owing to a shift in sex ratio. This change was reflected in a long-term decrease in glycogen stores in multiply exposed flies, while a brief effect on triglyceride stores was observed, suggesting flies are reallocating energy stores. Given that many environments are not static, this trade-off indicates that investigating the effects of repeated stress exposure is important for understanding and predicting physiological responses in the wild.


2021 ◽  
Author(s):  
Callum Talbot-Cooper ◽  
Teodors Pantelejevs ◽  
John P. Shannon ◽  
Christian R. Cherry ◽  
Marcus T. Au ◽  
...  

The induction of interferon-stimulated genes by signal transducer and activator of transcription (STAT) proteins, is a critical host defence to fight virus infections. Here, a highly expressed poxvirus protein 018 is shown to inhibit IFN-induced signalling by binding the SH2 domain of STAT1 to prevent STAT1 association with an activated IFN receptor. Despite the presence of additional inhibitors of IFN-induced signalling, a poxvirus lacking 018 was attenuated in mice. The 2.0-angstrom crystal structure of the 018:STAT1 complex reveals a mechanism for a high-affinity, pTyr-independent mode of binding to an SH2 domain. Furthermore, the STAT1 binding motif of 018 shows sequence similarity to the STAT1-binding proteins from Nipah virus, which like 018, block the association of STAT1 with an IFN receptor. Taken together, these results provide detailed mechanistic insight into a potent mode of STAT1 antagonism, found to exist in genetically diverse virus families.


Genetics ◽  
1978 ◽  
Vol 88 (4) ◽  
pp. 755-759
Author(s):  
Annie Fleuriet

ABSTRACT Polymorphism for both alleles of a gene ref(2)P, which is a usual trait of French natural populations of Drosophila melanogaster, can be reproduced in experimental conditions. ref(2)P is a gene for resistance to the hereditary, noncontagious Rhabdovirus α, responsible for CO2 sensitivity in Drosophila melanogaster. The equilibrium frequencies observed in cages are the same as in the wild, whether α virus is present or not. The rapid rate of return to these equilibrium frequencies indicates that strong forces, which remain to be determined, are responsible for the maintenance of this polymorphism.


2011 ◽  
Vol 101 (9) ◽  
pp. 1081-1090 ◽  
Author(s):  
Yu Zhang ◽  
Kashmir Singh ◽  
Ravneet Kaur ◽  
Wenping Qiu

A severe vein-clearing and vine decline syndrome has emerged on grapevines (Vitis vinifera) and hybrid grape cultivars in the Midwest region of the United States. The typical symptoms are translucent vein-clearing on young leaves, short internodes and decline of vine vigor. Known viral pathogens of grapevines were not closely associated with the syndrome. To obtain a comprehensive profile of viruses in a diseased grapevine, small RNAs were enriched and two cDNA libraries were constructed from a symptomatic grapevine and a symptomless grapevine, respectively. Deep sequencing of the two cDNA libraries showed that the most abundant viral small RNAs align with the genomes of viruses in the genus Badnavirus, the family Caulimoviridae. Amplification of the viral DNA by polymerase chain reaction allowed the assembly of the whole genome sequence of a grapevine DNA virus, which shared the highest homology with the Badnavirus sequences. This is the first report of a DNA virus in grapevines. The new DNA virus is closely associated with the vein-clearing symptom, and thus has been given a provisional name Grapevine vein clearing virus (GVCV). GVCV was detected in six grapevine cultivars showing vein-clearing and vine decline syndrome in Missouri, Illinois, and Indiana, suggesting its wide distribution in the Midwest region of the United States. Discovery of DNA viruses in grapevines merits further studies on their epidemics and economic impact on grape production worldwide.


Genome ◽  
1995 ◽  
Vol 38 (3) ◽  
pp. 586-600 ◽  
Author(s):  
Anna S. Akhmanova ◽  
Petra C. T. Bindels ◽  
Jie Xu ◽  
Koos Miedema ◽  
Hannie Kremer ◽  
...  

We demonstrate that in Drosophila melanogaster the histone H3.3 replacement variant is encoded by two genes, H3.3A and H3.3B. We have isolated cDNA clones for H3.3A and cDNA and genomic clones for H3.3B. The genes encode exactly the same protein but are widely divergent in their untranslated regions (UTR). Both genes are expressed in embryos and adults; they are expressed in the gonads as well as in somatic tissues of the flies. However, only one of them, H3.3A, shows strong testes expression. The 3′ UTR of the H3.3A gene is relatively short (~250 nucleotides (nt)). H3.3B transcripts can be processed at several polyadenylation sites, the longest with a 3′ UTR of more than 1500 nt. The 3′ processing sites, preferentially used in the gonads and somatic tissues, are different. We have also isolated the Drosophila hydei homologues of the two H3.3 genes. They are quite similar to the D. melanogaster genes in their expression patterns. However, in contrast to their vertebrate counterparts, which are highly conserved in their noncoding regions, the Drosophila genes display only limited sequence similarity in these regions.Key words: H3.3 histone variant, Drosophila, sequence comparison, alternative polyadenylation, testis expression.


Sign in / Sign up

Export Citation Format

Share Document