scholarly journals Towards extracting supporting information about predicted protein-protein interactions

2015 ◽  
Author(s):  
Adam Roth ◽  
Sandeep Subramanian ◽  
Madhavi Ganapathiraju

One of the goals of relation extraction is to identify protein-protein interactions (PPIs) in biomedical literature. Current systems are capturing binary relations and also the direction and type of an interaction. Besides assisting in the curation PPIs into databases, there has been little real-world application of these algorithms. We describe UPSITE, a text mining tool for extracting evidence in support of a hypothesized interaction. Given a predicted PPI, UPSITE uses a binary relation detector to check whether a PPI is found in abstracts in PubMed. If it is not found, UPSITE retrieves documents relevant to each of the two proteins separately, and extracts contextual information about biological events surrounding each protein, and calculates semantic similarity of the two proteins to provide evidential support for the predicted PPI. In evaluations, relation extraction achieved an Fscore of 0.88 on the HPRD50 corpus, and semantic similarity measured with angular distance was found to be statistically significant. With the development of PPI prediction algorithms, the burden of interpreting the validity and relevance of novel PPIs is on biologists. We suggest that presenting annotations of the two proteins in a PPI side-by-side and a score that quantifies their similarity lessens this burden to some extent.

2014 ◽  
Vol 12 (06) ◽  
pp. 1442008 ◽  
Author(s):  
Jung-Hsien Chiang ◽  
Jiun-Huang Ju

Protein–protein interactions (PPIs) are involved in the majority of biological processes. Identification of PPIs is therefore one of the key aims of biological research. Although there are many databases of PPIs, many other unidentified PPIs could be buried in the biomedical literature. Therefore, automated identification of PPIs from biomedical literature repositories could be used to discover otherwise hidden interactions. Search engines, such as Google, have been successfully applied to measure the relatedness among words. Inspired by such approaches, we propose a novel method to identify PPIs through semantic similarity measures among protein mentions. We define six semantic similarity measures as features based on the page counts retrieved from the MEDLINE database. A machine learning classifier, Random Forest, is trained using the above features. The proposed approach achieve an averaged micro-F of 71.28% and an averaged macro-F of 64.03% over five PPI corpora, an improvement over the results of using only the conventional co-occurrence feature (averaged micro-F of 68.79% and an averaged macro-F of 60.49%). A relation-word reinforcement further improves the averaged micro-F to 71.3% and averaged macro-F to 65.12%. Comparing the results of the current work with other studies on the AIMed corpus (ranging from 77.58% to 85.1% in micro-F, 62.18% to 76.27% in macro-F), we show that the proposed approach achieves micro-F of 81.88% and macro-F of 64.01% without the use of sophisticated feature extraction. Finally, we manually examine the newly discovered PPI pairs based on a literature review, and the results suggest that our approach could extract novel protein–protein interactions.


2019 ◽  
Vol 26 (21) ◽  
pp. 3890-3910 ◽  
Author(s):  
Branislava Gemovic ◽  
Neven Sumonja ◽  
Radoslav Davidovic ◽  
Vladimir Perovic ◽  
Nevena Veljkovic

Background: The significant number of protein-protein interactions (PPIs) discovered by harnessing concomitant advances in the fields of sequencing, crystallography, spectrometry and two-hybrid screening suggests astonishing prospects for remodelling drug discovery. The PPI space which includes up to 650 000 entities is a remarkable reservoir of potential therapeutic targets for every human disease. In order to allow modern drug discovery programs to leverage this, we should be able to discern complete PPI maps associated with a specific disorder and corresponding normal physiology. Objective: Here, we will review community available computational programs for predicting PPIs and web-based resources for storing experimentally annotated interactions. Methods: We compared the capacities of prediction tools: iLoops, Struck2Net, HOMCOS, COTH, PrePPI, InterPreTS and PRISM to predict recently discovered protein interactions. Results: We described sequence-based and structure-based PPI prediction tools and addressed their peculiarities. Additionally, since the usefulness of prediction algorithms critically depends on the quality and quantity of the experimental data they are built on; we extensively discussed community resources for protein interactions. We focused on the active and recently updated primary and secondary PPI databases, repositories specialized to the subject or species, as well as databases that include both experimental and predicted PPIs. Conclusion: PPI complexes are the basis of important physiological processes and therefore, possible targets for cell-penetrating ligands. Reliable computational PPI predictions can speed up new target discoveries through prioritization of therapeutically relevant protein–protein complexes for experimental studies.


2019 ◽  
pp. 20-48
Author(s):  
Geoffrey E. Hill

To understand the evolutionary consequences of poor coadaptation of mitochondrial and nuclear genes, it is necessary to consider in molecular detail the manifestations of mitochondrial dysfunction. Most considerations of mitochondrial dysfunction resulting from mitonuclear incompatibilities focus on protein–protein interactions in the electron transport system, but the interactions of mitochondrial and nuclear genes in enabling the transcription, translation, and replication of mitochondrial DNA can play an equally important role in mitonuclear coevolution and coadaptation. This chapter reviews the extensive literature on how mitochondrial dysfunction is the cause of many inherited human diseases and explains how this biomedical literature connects to a rapidly growing body of research on the evolution and maintenance of coadaptation of mitochondrial and nuclear genes among non-human eukaryotes. The goal of the chapter is to establish the fundamental importance of coadaptation between co-functioning mitochondrial and nuclear genes.


2019 ◽  
Vol 20 (S16) ◽  
Author(s):  
Da Zhang ◽  
Mansur Kabuka

Abstract Background Protein-protein interactions(PPIs) engage in dynamic pathological and biological procedures constantly in our life. Thus, it is crucial to comprehend the PPIs thoroughly such that we are able to illuminate the disease occurrence, achieve the optimal drug-target therapeutic effect and describe the protein complex structures. However, compared to the protein sequences obtainable from various species and organisms, the number of revealed protein-protein interactions is relatively limited. To address this dilemma, lots of research endeavor have investigated in it to facilitate the discovery of novel PPIs. Among these methods, PPI prediction techniques that merely rely on protein sequence data are more widespread than other methods which require extensive biological domain knowledge. Results In this paper, we propose a multi-modal deep representation learning structure by incorporating protein physicochemical features with the graph topological features from the PPI networks. Specifically, our method not only bears in mind the protein sequence information but also discerns the topological representations for each protein node in the PPI networks. In our paper, we construct a stacked auto-encoder architecture together with a continuous bag-of-words (CBOW) model based on generated metapaths to study the PPI predictions. Following by that, we utilize the supervised deep neural networks to identify the PPIs and classify the protein families. The PPI prediction accuracy for eight species ranged from 96.76% to 99.77%, which signifies that our multi-modal deep representation learning framework achieves superior performance compared to other computational methods. Conclusion To the best of our knowledge, this is the first multi-modal deep representation learning framework for examining the PPI networks.


2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Theodosios Theodosiou ◽  
Nikolaos Papanikolaou ◽  
Maria Savvaki ◽  
Giulia Bonetto ◽  
Stella Maxouri ◽  
...  

Abstract The in-depth study of protein–protein interactions (PPIs) is of key importance for understanding how cells operate. Therefore, in the past few years, many experimental as well as computational approaches have been developed for the identification and discovery of such interactions. Here, we present UniReD, a user-friendly, computational prediction tool which analyses biomedical literature in order to extract known protein associations and suggest undocumented ones. As a proof of concept, we demonstrate its usefulness by experimentally validating six predicted interactions and by benchmarking it against public databases of experimentally validated PPIs succeeding a high coverage. We believe that UniReD can become an important and intuitive resource for experimental biologists in their quest for finding novel associations within a protein network and a useful tool to complement experimental approaches (e.g. mass spectrometry) by producing sorted lists of candidate proteins for further experimental validation. UniReD is available at http://bioinformatics.med.uoc.gr/unired/


2020 ◽  
Vol 36 (15) ◽  
pp. 4323-4330 ◽  
Author(s):  
Cong Sun ◽  
Zhihao Yang ◽  
Leilei Su ◽  
Lei Wang ◽  
Yin Zhang ◽  
...  

Abstract Motivation The biomedical literature contains a wealth of chemical–protein interactions (CPIs). Automatically extracting CPIs described in biomedical literature is essential for drug discovery, precision medicine, as well as basic biomedical research. Most existing methods focus only on the sentence sequence to identify these CPIs. However, the local structure of sentences and external biomedical knowledge also contain valuable information. Effective use of such information may improve the performance of CPI extraction. Results In this article, we propose a novel neural network-based approach to improve CPI extraction. Specifically, the approach first employs BERT to generate high-quality contextual representations of the title sequence, instance sequence and knowledge sequence. Then, the Gaussian probability distribution is introduced to capture the local structure of the instance. Meanwhile, the attention mechanism is applied to fuse the title information and biomedical knowledge, respectively. Finally, the related representations are concatenated and fed into the softmax function to extract CPIs. We evaluate our proposed model on the CHEMPROT corpus. Our proposed model is superior in performance as compared with other state-of-the-art models. The experimental results show that the Gaussian probability distribution and external knowledge are complementary to each other. Integrating them can effectively improve the CPI extraction performance. Furthermore, the Gaussian probability distribution can effectively improve the extraction performance of sentences with overlapping relations in biomedical relation extraction tasks. Availability and implementation Data and code are available at https://github.com/CongSun-dlut/CPI_extraction. Supplementary information Supplementary data are available at Bioinformatics online.


BMC Genomics ◽  
2019 ◽  
Vol 20 (S9) ◽  
Author(s):  
Xiaoshi Zhong ◽  
Rama Kaalia ◽  
Jagath C. Rajapakse

Abstract Background Semantic similarity between Gene Ontology (GO) terms is a fundamental measure for many bioinformatics applications, such as determining functional similarity between genes or proteins. Most previous research exploited information content to estimate the semantic similarity between GO terms; recently some research exploited word embeddings to learn vector representations for GO terms from a large-scale corpus. In this paper, we proposed a novel method, named GO2Vec, that exploits graph embeddings to learn vector representations for GO terms from GO graph. GO2Vec combines the information from both GO graph and GO annotations, and its learned vectors can be applied to a variety of bioinformatics applications, such as calculating functional similarity between proteins and predicting protein-protein interactions. Results We conducted two kinds of experiments to evaluate the quality of GO2Vec: (1) functional similarity between proteins on the Collaborative Evaluation of GO-based Semantic Similarity Measures (CESSM) dataset and (2) prediction of protein-protein interactions on the Yeast and Human datasets from the STRING database. Experimental results demonstrate the effectiveness of GO2Vec over the information content-based measures and the word embedding-based measures. Conclusion Our experimental results demonstrate the effectiveness of using graph embeddings to learn vector representations from undirected GO and GOA graphs. Our results also demonstrate that GO annotations provide useful information for computing the similarity between GO terms and between proteins.


2019 ◽  
Vol 13 (S1) ◽  
Author(s):  
Qingqing Li ◽  
Zhihao Yang ◽  
Zhehuan Zhao ◽  
Ling Luo ◽  
Zhiheng Li ◽  
...  

Abstract Background Protein–protein interaction (PPI) information extraction from biomedical literature helps unveil the molecular mechanisms of biological processes. Especially, the PPIs associated with human malignant neoplasms can unveil the biology behind these neoplasms. However, such PPI database is not currently available. Results In this work, a database of protein–protein interactions associated with 171 kinds of human malignant neoplasms named HMNPPID is constructed. In addition, a visualization program, named VisualPPI, is provided to facilitate the analysis of the PPI network for a specific neoplasm. Conclusions HMNPPID can hopefully become an important resource for the research on PPIs of human malignant neoplasms since it provides readily available data for healthcare professionals. Thus, they do not need to dig into a large amount of biomedical literatures any more, which may accelerate the researches on the PPIs of malignant neoplasms.


Sign in / Sign up

Export Citation Format

Share Document