scholarly journals UniProt-Related Documents (UniReD): assisting wet lab biologists in their quest on finding novel counterparts in a protein network

2020 ◽  
Vol 2 (1) ◽  
Author(s):  
Theodosios Theodosiou ◽  
Nikolaos Papanikolaou ◽  
Maria Savvaki ◽  
Giulia Bonetto ◽  
Stella Maxouri ◽  
...  

Abstract The in-depth study of protein–protein interactions (PPIs) is of key importance for understanding how cells operate. Therefore, in the past few years, many experimental as well as computational approaches have been developed for the identification and discovery of such interactions. Here, we present UniReD, a user-friendly, computational prediction tool which analyses biomedical literature in order to extract known protein associations and suggest undocumented ones. As a proof of concept, we demonstrate its usefulness by experimentally validating six predicted interactions and by benchmarking it against public databases of experimentally validated PPIs succeeding a high coverage. We believe that UniReD can become an important and intuitive resource for experimental biologists in their quest for finding novel associations within a protein network and a useful tool to complement experimental approaches (e.g. mass spectrometry) by producing sorted lists of candidate proteins for further experimental validation. UniReD is available at http://bioinformatics.med.uoc.gr/unired/

2019 ◽  
pp. 20-48
Author(s):  
Geoffrey E. Hill

To understand the evolutionary consequences of poor coadaptation of mitochondrial and nuclear genes, it is necessary to consider in molecular detail the manifestations of mitochondrial dysfunction. Most considerations of mitochondrial dysfunction resulting from mitonuclear incompatibilities focus on protein–protein interactions in the electron transport system, but the interactions of mitochondrial and nuclear genes in enabling the transcription, translation, and replication of mitochondrial DNA can play an equally important role in mitonuclear coevolution and coadaptation. This chapter reviews the extensive literature on how mitochondrial dysfunction is the cause of many inherited human diseases and explains how this biomedical literature connects to a rapidly growing body of research on the evolution and maintenance of coadaptation of mitochondrial and nuclear genes among non-human eukaryotes. The goal of the chapter is to establish the fundamental importance of coadaptation between co-functioning mitochondrial and nuclear genes.


2019 ◽  
Vol 13 (S1) ◽  
Author(s):  
Qingqing Li ◽  
Zhihao Yang ◽  
Zhehuan Zhao ◽  
Ling Luo ◽  
Zhiheng Li ◽  
...  

Abstract Background Protein–protein interaction (PPI) information extraction from biomedical literature helps unveil the molecular mechanisms of biological processes. Especially, the PPIs associated with human malignant neoplasms can unveil the biology behind these neoplasms. However, such PPI database is not currently available. Results In this work, a database of protein–protein interactions associated with 171 kinds of human malignant neoplasms named HMNPPID is constructed. In addition, a visualization program, named VisualPPI, is provided to facilitate the analysis of the PPI network for a specific neoplasm. Conclusions HMNPPID can hopefully become an important resource for the research on PPIs of human malignant neoplasms since it provides readily available data for healthcare professionals. Thus, they do not need to dig into a large amount of biomedical literatures any more, which may accelerate the researches on the PPIs of malignant neoplasms.


2019 ◽  
Vol 47 (W1) ◽  
pp. W338-W344 ◽  
Author(s):  
Carlos H M Rodrigues ◽  
Yoochan Myung ◽  
Douglas E V Pires ◽  
David B Ascher

AbstractProtein–protein Interactions are involved in most fundamental biological processes, with disease causing mutations enriched at their interfaces. Here we present mCSM-PPI2, a novel machine learning computational tool designed to more accurately predict the effects of missense mutations on protein–protein interaction binding affinity. mCSM-PPI2 uses graph-based structural signatures to model effects of variations on the inter-residue interaction network, evolutionary information, complex network metrics and energetic terms to generate an optimised predictor. We demonstrate that our method outperforms previous methods, ranking first among 26 others on CAPRI blind tests. mCSM-PPI2 is freely available as a user friendly webserver at http://biosig.unimelb.edu.au/mcsm_ppi2/.


PLoS ONE ◽  
2012 ◽  
Vol 7 (12) ◽  
pp. e51304 ◽  
Author(s):  
Antonio M. Rezende ◽  
Edson L. Folador ◽  
Daniela de M. Resende ◽  
Jeronimo C. Ruiz

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Su-Fang Wang ◽  
Sangho Oh ◽  
Yue-Xiu Si ◽  
Zhi-Jiang Wang ◽  
Hong-Yan Han ◽  
...  

The various studies on tyrosinase have recently gained the attention of researchers due to their potential application values and the biological functions. In this study, we predicted the 3D structure of human tyrosinase and simulated the protein-protein interactions between tyrosinase and three binding partners, four and half LIM domains 2 (FHL2), cytochrome b-245 alpha polypeptide (CYBA), and RNA-binding motif protein 9 (RBM9). Our interaction simulations showed significant binding energy scores of −595.3 kcal/mol for FHL2, −859.1 kcal/mol for CYBA, and −821.3 kcal/mol for RBM9. We also investigated the residues of each protein facing toward the predicted site of interaction with tyrosinase. Our computational predictions will be useful for elucidating the protein-protein interactions of tyrosinase and studying its binding mechanisms.


2021 ◽  
Vol 22 (19) ◽  
pp. 10897
Author(s):  
Cristian D. Loaiza ◽  
Naveen Duhan ◽  
Rakesh Kaundal

The Citrus genus comprises some of the most important and commonly cultivated fruit plants. Within the last decade, citrus greening disease (also known as huanglongbing or HLB) has emerged as the biggest threat for the citrus industry. This disease does not have a cure yet and, thus, many efforts have been made to find a solution to this devastating condition. There are challenges in the generation of high-yield resistant cultivars, in part due to the limited and sparse knowledge about the mechanisms that are used by the Liberibacter bacteria to proliferate the infection in Citrus plants. Here, we present GreeningDB, a database implemented to provide the annotation of Liberibacter proteomes, as well as the host–pathogen comparactomics tool, a novel platform to compare the predicted interactomes of two HLB host–pathogen systems. GreeningDB is built to deliver a user-friendly interface, including network visualization and links to other resources. We hope that by providing these characteristics, GreeningDB can become a central resource to retrieve HLB-related protein annotations, and thus, aid the community that is pursuing the development of molecular-based strategies to mitigate this disease’s impact. The database is freely available at http://bioinfo.usu.edu/GreeningDB/.


Sign in / Sign up

Export Citation Format

Share Document