scholarly journals A comparison of ancestral state reconstruction methods for quantitative characters

2016 ◽  
Author(s):  
Manuela Royer-Carenzi ◽  
Gilles Didier

Choosing an ancestral state reconstruction method among the alternatives available for quantita- tive characters may be puzzling. We present here a comparison of five of them, namely the maximum likelihood, restricted maximum likelihood, generalized least squares, phylogenetic independent con- trasts and squared parsimony methods. A review of the relations between these methods shows that the first three ones infer the same ancestral states and can only be distinguished by the distributions accounting for the reconstruction uncertainty which they provide. The respective accuracy of the methods is assessed over character evolution simulated under a Brownian motion with (and without) drift. We start by giving the general form of ancestral state distributions conditioned on leaf states under the simulation model. Ancestral distributions are used first, to give a theoretical lower bound of the expected recon- struction error, and second, to develop an original evaluation scheme which is more efficient than comparing the reconstructed and the simulated states. Our simulations show that: (i) the methods do not perform well as the evolution drift increases; (ii) the maximum likelihood method is generally the most accurate and (iii) not all the distributions of the reconstruction uncertainty provided by the methods are equally relevant.

2018 ◽  
Vol 8 (1) ◽  
pp. 22-54 ◽  
Author(s):  
Gerhard Jäger ◽  
Johann-Mattis List

AbstractCurrent efforts in computational historical linguistics are predominantly concerned with phylogenetic inference. Methods for ancestral state reconstruction have only been applied sporadically. In contrast to phylogenetic algorithms, automatic reconstruction methods presuppose phylogenetic information in order to explain what has evolved when and where. Here we report a pilot study exploring how well automatic methods for ancestral state reconstruction perform in the task of onomasiological reconstruction in multilingual word lists, where algorithms are used to infer how the words evolved along a given phylogeny, and reconstruct which cognate classes were used to express a given meaning in the ancestral languages. Comparing three different methods, Maximum Parsimony, Minimal Lateral Networks, and Maximum Likelihood on three different test sets (Indo-European, Austronesian, Chinese) using binary and multi-state coding of the data as well as single and sampled phylogenies, we find that Maximum Likelihood largely outperforms the other methods. At the same time, however, the general performance was disappointingly low, ranging between 0.66 (Chinese) and 0.79 (Austronesian) for the F-Scores. A closer linguistic evaluation of the reconstructions proposed by the best method and the reconstructions given in the gold standards revealed that the majority of the cases where the algorithms failed can be attributed to problems of independent semantic shift (homoplasy), to morphological processes in lexical change, and to wrong reconstructions in the independently created test sets that we employed.


2016 ◽  
Author(s):  
Gilles Didier

AbstractThe time-dependent-asymmetric-linear parsimony is an ancestral state reconstruction method which extends the standard linear parsimony (a.k.a. Wagner parsimony) approach by taking into account both branch lengths and asymmetric evolutionary costs for reconstructing quantitative characters (asymmetric costs amount to assuming an evolutionary trend toward the direction with the lowest cost).A formal study of the influence of the asymmetry parameter shows that the time-dependent-asymmetric-linear parsimony infers states which are all taken among the known states, except for some degenerate cases corresponding to special values of the asymmetry parameter. This remarkable property holds in particular for the Wagner parsimony.This study leads to a polynomial algorithm which determines, and provides a compact representation of, the parametric reconstruction of a phylogenetic tree, that is for all the unknown nodes, the set of all the possible reconstructed states associated to the asymmetry parameters leading to them. The time-dependent-asymmetric-linear parsimony is finally illustrated with the parametric reconstruction of the body size of cetaceans.


2017 ◽  
Vol 84 (1) ◽  
Author(s):  
Dong-Dong Yang ◽  
Gustavo M. de Billerbeck ◽  
Jin-jing Zhang ◽  
Frank Rosenzweig ◽  
Jean-Marie Francois

ABSTRACTHomology searches indicate thatSaccharomyces cerevisiaestrain BY4741 contains seven redundant genes that encode putative aryl-alcohol dehydrogenases (AAD). YeastAADgenes are located in subtelomeric regions of different chromosomes, and their functional role(s) remain enigmatic. Here, we show that two of these genes,AAD4andAAD14, encode functional enzymes that reduce aliphatic and aryl-aldehydes concomitant with the oxidation of cofactor NADPH, and that Aad4p and Aad14p exhibit different substrate preference patterns. Other yeastAADgenes are undergoing pseudogenization. The 5′ sequence ofAAD15has been deleted from the genome. Repair of anAAD3missense mutation at the catalytically essential Tyr73residue did not result in a functional enzyme. However, ancestral-state reconstruction by fusing Aad6 with Aad16 and by N-terminal repair of Aad10 restores NADPH-dependent aryl-alcohol dehydrogenase activities. Phylogenetic analysis indicates thatAADgenes are narrowly distributed in wood-saprophyte fungi and in yeast that occupy lignocellulosic niches. Because yeastAADgenes exhibit activity on veratraldehyde, cinnamaldehyde, and vanillin, they could serve to detoxify aryl-aldehydes released during lignin degradation. However, none of these compounds induce yeastAADgene expression, and Aad activities do not relieve aryl-aldehyde growth inhibition. Our data suggest an ancestral role forAADgenes in lignin degradation that is degenerating as a result of yeast's domestication and use in brewing, baking, and other industrial applications.IMPORTANCEFunctional characterization of hypothetical genes remains one of the chief tasks of the postgenomic era. Although the firstSaccharomyces cerevisiaegenome sequence was published over 20 years ago, 22% of its estimated 6,603 open reading frames (ORFs) remain unverified. One outstanding example of this category of genes is the enigmatic seven-memberAADfamily. Here, we demonstrate that proteins encoded by two members of this family exhibit aliphatic and aryl-aldehyde reductase activity, and further that such activity can be recovered from pseudogenizedAADgenes via ancestral-state reconstruction. The phylogeny of yeastAADgenes suggests that these proteins may have played an important ancestral role in detoxifying aromatic aldehydes in ligninolytic fungi. However, in yeast adapted to niches rich in sugars,AADgenes become subject to mutational erosion. Our findings shed new light on the selective pressures and molecular mechanisms by which genes undergo pseudogenization.


2012 ◽  
Vol 81 (1) ◽  
pp. 43-54 ◽  
Author(s):  
James D. Reimer ◽  
Meifang Lin ◽  
Takuma Fujii ◽  
David J.W. Lane ◽  
Bert W. Hoeksema

The zoanthid genus Sphenopus (Cnidaria: Anthozoa: Zoantharia), like many other brachycnemic zoanthids, is found in shallow subtropical and tropical waters, but is uniquely unitary (solitary, monostomatous), azooxanthellate, and free-living. With sparse knowledge of its phylogenetic position, this study examines the phylogenetic position of Sphenopus within the family Sphenopidae utilizing specimens from southern Taiwan and Brunei collected in 1999-2011, and furthermore analyzes the evolution of its unique character set via ancestral state reconstruction analyses. Phylogenetic analyses surprisingly show Sphenopus to be phylogenetically positioned within the genus Palythoa, which is colonial (polystomatous), zooxanthellate, and attached to solid substrate. Ancestral state reconstruction strongly indicates that the unique characters of Sphenopus have evolved recently within Palythoa and only in the Sphenopuslineage. These results indicate that zoanthid body plans can evolve with rapidity, as in some other marine invertebrates, and that the traditional definitions of zoanthid genera may need reexamination.


2018 ◽  
Vol 285 (1893) ◽  
pp. 20181632 ◽  
Author(s):  
Robin M. D. Beck ◽  
Charles Baillie

Phylogenies of mammals based on morphological data continue to show several major areas of conflict with the current consensus view of their relationships, which is based largely on molecular data. This raises doubts as to whether current morphological character sets are able to accurately resolve mammal relationships. We tested this under a hypothetical ‘best case scenario’ by using ancestral state reconstruction (under both maximum parsimony and maximum likelihood) to infer the morphologies of fossil ancestors for all clades present in a recent comprehensive DNA sequence-based phylogeny of mammals, and then seeing what effect the subsequent inclusion of these predicted ancestors had on unconstrained phylogenetic analyses of morphological data. We found that this resulted in topologies that are highly congruent with the current consensus phylogeny, at least when the predicted ancestors are assumed to be well preserved and densely sampled. Most strikingly, several analyses recovered the monophyly of clades that have never been found in previous morphology-only studies, such as Afrotheria and Laurasiatheria. Our results suggest that, at least in principle, improvements in the fossil record—specifically the discovery of fossil taxa that preserve the ancestral or near-ancestral morphologies of the nodes in the current consensus—may be sufficient to largely reconcile morphological and molecular estimates of mammal phylogeny, even using current morphological character sets.


Sign in / Sign up

Export Citation Format

Share Document