scholarly journals Toward defining deep brain stimulation targets in MNI space: A subcortical atlas based on multimodal MRI, histology and structural connectivity

2016 ◽  
Author(s):  
Siobhan Ewert ◽  
Philip Plettig ◽  
M. Mallar Chakravarty ◽  
Andrea Kühn ◽  
Andreas Horn

AbstractThree-dimensional atlases of subcortical brain structures are valuable tools to reference anatomy in neuroscience and neurology. In the special case of deep brain stimulation (DBS), the three most common targets are the subthalamic nucleus (STN), the internal part of the pallidum (GPi) and the ventral intermediate nucleus of the thalamus (VIM). With the help of atlases that define the position and shape of these target regions within a well-defined stereotactic space, their spatial relationship to implanted deep brain stimulation (DBS) electrodes may be determined.Here we present a composite atlas based on manual segmentations of a multi-modal high-resolution MNI template series, histology and structural connectivity. To attain exact congruence to the template anatomy, key structures were defined using all four modalities of the template simultaneously. In a first step tissue probability maps were defined based on the multimodal intensity profile of each structure. These observer-independent probability maps provided an excellent basis for the subsequent manual segmentation particularly when defining the outline of the target regions.Second, the key structures were used as an anchor point to coregister a histology based atlas into standard space. Finally, a sub-segmentation of the subthalamic nucleus into three functional zones was estimated based on structural connectivity. The resulting composite atlas uses the spatial information of the MNI template for DBS key structures that are visible on the template itself. For remaining structures, it relies on histology or structural connectivity. In this way the final atlas combines the anatomical detail of a histology based atlas with the spatial accuracy of key structures in relationship to the template anatomy. Thus, the atlas provides an ideal tool for the analysis of DBS electrode placement.Highlights:Composite subcortical atlas based on a multimodal, high definition MNI template series, histology and tractographyHigh definition atlas of DBS targets exactly matching MNI 152 NLIN 2009b spaceMultimodal subcortical segmentation algorithm applied to MNI template

2020 ◽  
pp. 119-124
Author(s):  
Mónica M. Kurtis ◽  
Javier R. Pérez-Sánchez

Parkinson disease (PD) patients who have undergone surgery and develop festinating gait and postural instability are challenging to diagnose and treat. This chapter describes the case of an early-onset PD patient who underwent deep brain stimulation (DBS) 4 years after disease onset due to motor and nonmotor fluctuations and medication side effects (impulse control disorder). A year after surgery, the patient developed gait and balance problems in the on-medication/on-stimulation states that resolved after turning stimulation off or withdrawing medication for 12 hours. However, other symptoms, including as bradykinesia, rigidity, and tremor, reappeared. Troubleshooting involved magnetic resonance imaging to evaluate electrode placement and complete screening of all contacts with successful reprogramming and medication adjustments. The pathophysiology of balance problems is discussed, including the synergistic effects of subthalamic nucleus DBS and dopaminergic treatment, which may lead to increased postural sway and lower limb dystonia.


2015 ◽  
Vol 11 (1) ◽  
pp. 80-88
Author(s):  
Mahesh B Shenai ◽  
Andrew Romeo ◽  
Harrison C Walker ◽  
Stephanie Guthrie ◽  
Ray L Watts ◽  
...  

Abstract BACKGROUND Subthalamic nucleus (STN) deep brain stimulation is a successful intervention for medically refractory Parkinson disease, although its efficacy depends on optimal electrode placement. Even though the predominant effect is observed contralaterally, modest improvements in ipsilateral and midline symptoms are also observed. OBJECTIVE To elucidate the role of contact location of unilateral deep brain stimulation on contralateral, ipsilateral, and axial subscores of Parkinson disease motor symptoms. METHODS Eighty-six patients receiving first deep brain stimulation STN electrode placements were identified, yielding 73 patients with 3-month follow-up. Total preoperative and postoperative Unified Parkinson Disease Rating Scale Part III scores were obtained and divided into contralateral, ipsilateral, and midline subscores. Contact location was determined on immediate postoperative magnetic resonance imaging. A 3-dimensional ordinary “kriging” algorithm generated spatial interpolations for total, ipsilateral, contralateral, and midline symptom categories. Interpolative reconstructions were performed in the axial planes (z = −0.5, −1.0, −1.5, −3.5, −4.5, −6.0) and a sagittal plane (x = 12.0). Interpolation error and significance were quantified by use of a cross-validation technique and quantile-quantile analysis. RESULTS There was an overall reduction in Unified Parkinson Disease Rating Scale Part III symptoms: total = 37.0 ± 24.11% (P < .05), ipsilateral = 15.9 ± 51.8%, contralateral = 56.2 ± 26.8% (P < .05), and midline = 26.5 ± 34.7%. Kriging interpolation was performed and cross-validated with quantile-quantile analysis with high correlation (R2 > 0.92) and demonstrated regions of efficacy for each symptom category. Contralateral symptoms demonstrated broad regions of efficacy across the peri-STN area. The ipsilateral and midline regions of efficacy were constrained and located along the dorsal STN and caudal zona incerta. CONCLUSION We provide evidence for a unique functional topographic window in which contralateral, ipsilateral, and midline structures may achieve the best efficacy. Although there are overlapping regions, laterality demonstrates distinct topographies. Surgical optimization should target the intersection of optimal regions for these symptom categories.


2019 ◽  
Vol 90 (e7) ◽  
pp. A1.3-A2 ◽  
Author(s):  
San San Xu ◽  
Nicholas C Sinclair ◽  
Kristian J Bulluss ◽  
Thushara Perera ◽  
Wee-Lih Lee ◽  
...  

IntroductionDBS can improve motor deficit in Parkinson’s disease (PD) patients. Existing devices have limitations due to electrode positioning errors, fallible manual programming and delivery of continuous ‘open-loop’ stimulation despite fluctuating patient state. This results in partial efficacy, adverse effects and increased cost. One solution is to use an electrical feedback signal or ‘biomarker’ recorded from DBS electrodes. The most widely studied signal has been spontaneous local field potentials (LFPs), particularly beta band (13–30 Hz) and high frequency oscillations (HFO) (200–400 Hz). Here, we report a novel biomarker in the form of a large amplitude, evoked potential, with a characteristic oscillatory decay, termed evoked resonant neural activity (ERNA).1MethodsLFPs and ERNA were recorded in 14 patients with PD (28 hemispheres) undergoing STN DBS surgery. The four contacts in each electrode array were ranked according to ERNA amplitude, beta power, HFO power and proximity to the anatomically ideal stimulation location. At least 3 months after surgery, motor scores (UPDRS III, reaction time) were evaluated off-DBS and during stimulation delivered through each electrode contact in a randomised order.ResultsERNA amplitude, beta power and contact proximity to the anatomically ideal stimulation location predicted magnitude of therapeutic response to DBS. However, after exclusion of covariance, ERNA amplitude remained the only significant predictor of DBS response.ConclusionERNA is a readily recordable, large amplitude signal that accurately correlates with motor response to DBS. It holds significant potential as a biomarker for guiding electrode implantation, ideal contact selection, automated parameter fitting and delivery of closed-loop DBS.ReferenceSinclair NC, McDermott HJ, Bulluss KJ, Fallon JB, Perera T, Xu SS, et al. Subthalamic nucleus deep brain stimulation evokes resonant neural activity. Annals of neurology 2018;83(5).


2020 ◽  
Author(s):  
Svenja Treu ◽  
Bryan Strange ◽  
Simon Oxenford ◽  
Andrea Kühn ◽  
Ningfei Li ◽  
...  

AbstractDeep Brain Stimulation (DBS) is an established treatment option for movement disorders and is investigated to treat a growing number of other brain disorders. It has been shown that DBS effects are highly dependent on exact electrode placement, which is especially important when probing novel indications or stereotactic targets. Thus, considering precise electrode placement is crucial when investigating efficacy of DBS targets. To measure clinical improvement as a function of electrode placement, neuroscientific methodology and specialized software tools are needed. Such tools should have the goal to make electrode placement comparable across patients and DBS centers, and include statistical analysis options to validate and define optimal targets. Moreover, to allow for comparability across different research sites, these need to be performed within an algorithmically and anatomically standardized and openly available group space. With the publication of Lead-DBS software in 2014, an open-source tool was introduced that allowed for precise electrode reconstructions based on pre- and postoperative neuroimaging data. Here, we introduce Lead Group, implemented within the Lead-DBS environment and specifically designed to meet aforementioned demands. In the present article, we showcase the various processing streams of Lead Group in a retrospective cohort of 51 patients suffering from Parkinson’s disease, who were implanted with DBS electrodes to the subthalamic nucleus (STN). Specifically, we demonstrate various ways to visualize placement of all electrodes in the group and map clinical improvement values to subcortical space. We do so by using active coordinates and volumes of tissue activated, showing converging evidence of an optimal DBS target in the dorsolateral STN. Second, we relate DBS outcome to the impact of each electrode on local structures by measuring overlap of stimulation volumes with the STN. Finally, we explore the software functions for connectomic mapping, which may be used to relate DBS outcomes to connectivity estimates with remote brain areas. We isolate a specific fiber bundle – which structurally resembles the hyperdirect pathway – that is associated with good clinical outcome in the cohort. The manuscript is accompanied by a walkthrough tutorial through which users are able to reproduce all main results presented in the present manuscript. All data and code needed to reproduce results are openly available.HighlightsWe present a novel toolbox to carry out DBS imaging analyses on a group-levelGroup electrodes are visualized in 2D and 3D and related to clinical regressorsA favorable target and connectivity profiles for the treatment of PD are validated


Author(s):  
Ailish Coblentz ◽  
Gavin J. B. Elias ◽  
Alexandre Boutet ◽  
Jurgen Germann ◽  
Musleh Algarni ◽  
...  

OBJECTIVEThe objective of this study was to report the authors’ experience with deep brain stimulation (DBS) of the internal globus pallidus (GPi) as a treatment for pediatric dystonia, and to elucidate substrates underlying clinical outcome using state-of-the-art neuroimaging techniques.METHODSA retrospective analysis was conducted in 11 pediatric patients (6 girls and 5 boys, mean age 12 ± 4 years) with medically refractory dystonia who underwent GPi-DBS implantation between June 2009 and September 2017. Using pre- and postoperative MRI, volumes of tissue activated were modeled and weighted by clinical outcome to identify brain regions associated with clinical outcome. Functional and structural networks associated with clinical benefits were also determined using large-scale normative data sets.RESULTSA total of 21 implanted leads were analyzed in 11 patients. The average follow-up duration was 19 ± 20 months (median 5 months). Using a 7-point clinical rating scale, 10 patients showed response to treatment, as defined by scores < 3. The mean improvement in the Burke-Fahn-Marsden Dystonia Rating Scale motor score was 40% ± 23%. The probabilistic map of efficacy showed that the voxel cluster most associated with clinical improvement was located at the posterior aspect of the GPi, comparatively posterior and superior to the coordinates of the classic GPi target. Strong functional and structural connectivity was evident between the probabilistic map and areas such as the precentral and postcentral gyri, parietooccipital cortex, and brainstem.CONCLUSIONSThis study reported on a series of pediatric patients with dystonia in whom GPi-DBS resulted in variable clinical benefit and described a clinically favorable stimulation site for this cohort, as well as its structural and functional connectivity. This information could be valuable for improving surgical planning, simplifying programming, and further informing disease pathophysiology.


Sign in / Sign up

Export Citation Format

Share Document