scholarly journals Dendrites of DG granule cells contribute to pattern separation by controlling sparsity

2016 ◽  
Author(s):  
Spyridon Chavlis ◽  
Panagiotis C. Petrantonakis ◽  
Panayiota Poirazi

AbstractThe hippocampus plays a key role in pattern separation, the process of transforming similar incoming information to highly dissimilar, non-overlapping representations. Sparse firing granule cells (GCs) in the dentate gyrus (DG) have been proposed to undertake this computation, but little is known about which of their properties influence pattern separation. Dendritic atrophy has been reported in diseases associated with pattern separation deficits, suggesting a possible role for dendrites in this phenomenon. To investigate whether and how the dendrites of GCs contribute to pattern separation, we build a simplified, biologically relevant, computational model of the DG. Our model suggests that the presence of GC dendrites is associated with high pattern separation efficiency while their atrophy leads to increased excitability and performance impairments. These impairments can be rescued by restoring GC sparsity to control levels through various manipulations. We predict that dendrites contribute to pattern separation as a mechanism for controlling sparsity.

Author(s):  
Spyridon Chavlis ◽  
Panagiotis C. Petrantonakis ◽  
Panayiota Poirazi

Objectives: In order to distinguish similar memories, it is experimentally confirmed that the hippocampus forms distinct representations of them. The ability of the brain to disambiguate memories is known as pattern separation. It has been proposed that dentate gyrus (DG) accomplishes this task, specifically through its principal cells, called granule cells (GCs). In this project we investigate the role of GC dendrites in pattern separation by modifying their biophysical and morphological characteristics. Methods & Results: We have implemented a morphologically simple, yet biologically relevant, computational model of the DG that implements pattern separation. The network consists of four well-studied neuronal types: granule, mossy, basket, and HIPP cells. The GC model consists of an integrate-and-fire somatic compartment connected to a variable numbers of active dendritic compartments. For simplicity reasons, without sacrificing detail, we used point neurons to simulate the remaining neuronal types. GCs major input from the Entorhinal Cortex (EC) is simulated as independent poisson spike trains at realistic firing frequencies. The output of the network corresponds to the spiking activity of GCs and is estimated on two highly overlapping input patterns. Pattern separation is accomplished when the similarity between these input patterns is greater than the similarity between the respective output patterns, as assessed by the Hamming Distance (HD) metric. Preliminary results show that there is a positive correlation between the separation efficiency and the number of GC dendrites. Conclusions: Our preliminary results suggest that dendrites of GC cells facilitate the pattern separation capabilities of the DG.


2019 ◽  
Author(s):  
Olivia Gozel ◽  
Wulfram Gerstner

SummaryIn adult dentate gyrus neurogenesis, the link between maturation of newborn neurons and their function, such as behavioral pattern separation, has remained puzzling. By analyzing a theoretical model, we show that the switch from excitation to inhibition of the GABAergic input onto maturing newborn cells is crucial for their proper functional integration. When the GABAergic input is excitatory, cooperativity drives the growth of synapses such that newborn cells become sensitive to stimuli similar to those that activate mature cells. When GABAergic input switches to inhibitory, competition pushes the configuration of synapses onto newborn cells towards stimuli that are different from previously stored ones. This enables the maturing newborn cells to code for concepts that are novel, yet similar to familiar ones. Our theory of newborn cell maturation explains both how adult-born dentate granule cells integrate into the preexisting network and why they promote separation of similar but not distinct patterns.


2019 ◽  
Vol 39 (48) ◽  
pp. 9570-9584 ◽  
Author(s):  
Douglas GoodSmith ◽  
Heekyung Lee ◽  
Joshua P. Neunuebel ◽  
Hongjun Song ◽  
James J. Knierim

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Olivia Gozel ◽  
Wulfram Gerstner

In adult dentate gyrus neurogenesis, the link between maturation of newborn neurons and their function, such as behavioral pattern separation, has remained puzzling. By analyzing a theoretical model, we show that the switch from excitation to inhibition of the GABAergic input onto maturing newborn cells is crucial for their proper functional integration. When the GABAergic input is excitatory, cooperativity drives the growth of synapses such that newborn cells become sensitive to stimuli similar to those that activate mature cells. When GABAergic input switches to inhibitory, competition pushes the configuration of synapses onto newborn cells towards stimuli that are different from previously stored ones. This enables the maturing newborn cells to code for concepts that are novel, yet similar to familiar ones. Our theory of newborn cell maturation explains both how adult-born dentate granule cells integrate into the preexisting network and why they promote separation of similar but not distinct patterns.


2019 ◽  
Author(s):  
Cristian Morales ◽  
Juan Facundo Morici ◽  
Nelson Espinosa ◽  
Agostina Sacson ◽  
Ariel Lara-Vasquez ◽  
...  

AbstractEpisodic memory establishes and stores relations among the different elements of an experience, which are often similar and difficult to distinguish. Pattern separation, implemented by the dentate gyrus, is a neural mechanism that allows the discrimination of similar experiences by orthogonalizing synaptic inputs. Granule cells support such disambiguation by sparse rate coding, a process tightly controlled by highly diversified GABAergic neuronal populations, such as somatostatin-expressing cells which directly target the dendritic arbor of granule cells, massively innervated by entorhinal inputs reaching the molecular layer and conveying contextual information. Here, we tested the hypothesis that somatostatin neurons regulate the excitability of the dentate gyrus, thus controlling the efficacy of pattern separation during memory encoding in mice. Indeed, optogenetic suppression of dentate gyrus somatostatin neurons increased spiking activity in putative excitatory neurons and triggered dentate spikes. Moreover, optical inhibition of somatostatin neurons impaired both contextual and spatial discrimination of overlapping episodic-like memories during task acquisition. Importantly, effects were specific for similar environments, suggesting that pattern separation was selectively engaged when overlapping conditions ought to be distinguished. Overall, our results suggest that somatostatin cells regulate excitability in the dentate gyrus and are required for effective pattern separation during episodic memory encoding.Significance statementMemory systems must be able to discriminate stored representations of similar experiences in order to efficiently guide future decisions. This is solved by pattern separation, implemented in the dentate gyrus by granule cells to support episodic memory formation. The tonic inhibitory bombardment produced by multiple GABAergic cell populations maintains low activity levels in granule cells, permitting the process of pattern separation. Somatostatin-expressing cells are one of those interneuron populations, selectively targeting the distal dendrites of granule cells, where cortical multimodal information reaches the dentate gyrus. Hence, somatostatin cells constitute an ideal candidate to regulate pattern separation. Here, by using optogenetic stimulation in mice, we demonstrate that somatostatin cells are required for the acquisition of both contextual and spatial overlapping memories.


2020 ◽  
Author(s):  
Cristian Morales ◽  
Juan Facundo Morici ◽  
Nelson Espinosa ◽  
Agostina Sacson ◽  
Ariel Lara-Vasquez ◽  
...  

Abstract Memory systems ought to store and discriminate representations of similar experiences in order to efficiently guide future decisions. This problem is solved by pattern separation, implemented in the dentate gyrus (DG) by granule cells to support episodic memory formation. Pattern separation is enabled by tonic inhibitory bombardment generated by multiple GABAergic cell populations that strictly maintain low activity levels in granule cells. Somatostatin-expressing cells are one of those interneuron populations, selectively targeting the distal dendrites of granule cells, where cortical multimodal information reaches the DG. Nonetheless, somatostatin cells have very low connection probability and synaptic efficacy with both granule cells and other interneuron types. Hence, the role of somatostatin cells in DG circuitry, particularly in the context of pattern separation, remains uncertain. Here, by using optogenetic stimulation and behavioral tasks in mice, we demonstrate that somatostatin cells are required for the acquisition of both contextual and spatial overlapping memories.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Kyung-Ran Kim ◽  
Yoonsub Kim ◽  
Hyeon-Ju Jeong ◽  
Jong-Sun Kang ◽  
Sang Hun Lee ◽  
...  

AbstractAlzheimer’s disease (AD) is a progressive neurodegenerative disorder that causes memory loss. Most AD researches have focused on neurodegeneration mechanisms. Considering that neurodegenerative changes are not reversible, understanding early functional changes before neurodegeneration is critical to develop new strategies for early detection and treatment of AD. We found that Tg2576 mice exhibited impaired pattern separation at the early preclinical stage. Based on previous studies suggesting a critical role of dentate gyrus (DG) in pattern separation, we investigated functional changes in DG of Tg2576 mice. We found that granule cells in DG (DG-GCs) in Tg2576 mice showed increased action potential firing in response to long depolarizations and reduced 4-AP sensitive K+-currents compared to DG-GCs in wild-type (WT) mice. Among Kv4 family channels, Kv4.1 mRNA expression in DG was significantly lower in Tg2576 mice. We confirmed that Kv4.1 protein expression was reduced in Tg2576, and this reduction was restored by antioxidant treatment. Hyperexcitable DG and impaired pattern separation in Tg2576 mice were also recovered by antioxidant treatment. These results highlight the hyperexcitability of DG-GCs as a pathophysiologic mechanism underlying early cognitive deficits in AD and Kv4.1 as a new target for AD pathogenesis in relation to increased oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document