scholarly journals An autonomous meiosis-specific region of yeast Nup2 (hNup50) promotes normal meiotic chromosome dynamics in Saccharomyces cerevisiae

2016 ◽  
Author(s):  
Daniel B. Chu ◽  
Sean M. Burgess

ABSTRACTMeiosis is a specialized cellular program required to create haploid gametes from diploid parent cells. Prior to the first meiotic division, homologous chromosomes pair, synapse, and recombine to ensure their proper disjunction at anaphase I. Additionally, telomeres tethered at the nuclear envelope cluster in the bouquet configuration where they are subjected to dramatic pulling forces acting from outside of the nucleus. In Saccharomyces cerevisiae, the telomere-associated protein Ndj1 is required for bouquet formation. When Ndj1 is absent, these dramatic motions cease and multiple steps of meiosis I prophase progression are delayed. Here we identified Nup2 in a pool of enriched proteins that co-purify with tagged Ndj1 from meiotic cell extracts. Nup2 is a nonessential nucleoporin that functions in nuclear transport, boundary activity, and telomere silencing in mitotically dividing cells. We found that deletion of NUP2 delayed pairing and synapsis during meiosis, and led to decreased spore viability, similar to the ndj1Δ mutant phenotype. Surprisingly, the nup2Δ ndj1Δ double mutant failed to segregate chromosomes, even though the meiotic program continued. These results suggest that a physical impediment to nuclear division is created in the absence of Nup2 and Ndj1. Our deletion analysis of NUP2 identified a previously uncharacterized 125-amino acid region that is both necessary and sufficient to complement all of nup2Δ’s meiotic phenotypes, which we call the meiotic autonomous region (MAR). We propose that Ndj1 and Nup2 function in parallel pathways to promote the dynamic chromosome events of meiotic chromosome dynamics, perhaps through the establishment or maintenance of higher-order chromosome organization.

2005 ◽  
Vol 16 (3) ◽  
pp. 1178-1188 ◽  
Author(s):  
Mark Winey ◽  
Garry P. Morgan ◽  
Paul D. Straight ◽  
Thomas H. Giddings ◽  
David N. Mastronarde

Meiotic chromosome segregation leads to the production of haploid germ cells. During meiosis I (MI), the paired homologous chromosomes are separated. Meiosis II (MII) segregation leads to the separation of paired sister chromatids. In the budding yeast Saccharomyces cerevisiae, both of these divisions take place in a single nucleus, giving rise to the four-spored ascus. We have modeled the microtubules in 20 MI and 15 MII spindles by using reconstruction from electron micrographs of serially sectioned meiotic cells. Meiotic spindles contain more microtubules than their mitotic counterparts, with the highest number in MI spindles. It is possible to differentiate between MI versus MII spindles based on microtubule numbers and organization. Similar to mitotic spindles, kinetochores in either MI or MII are attached by a single microtubule. The models indicate that the kinetochores of paired homologous chromosomes in MI or sister chromatids in MII are separated at metaphase, similar to mitotic cells. Examination of both MI and MII spindles reveals that anaphase A likely occurs in addition to anaphase B and that these movements are concurrent. This analysis offers a structural basis for considering meiotic segregation in yeast and for the analysis of mutants defective in this process.


Genetics ◽  
1995 ◽  
Vol 139 (4) ◽  
pp. 1511-1520 ◽  
Author(s):  
J Loidl

Abstract Meiotic chromosome pairing in isogenic triploid and tetraploid strains of yeast and the consequences of polyploidy on meiotic chromosome segregation are studied. Synaptonemal complex formation at pachytene was found to be different in the triploid and in the tetraploid. In the triploid, triple-synapsis, that is, the connection of three homologues at a given site, is common. It can even extend all the way along the chromosomes. In the tetraploid, homologous chromosomes mostly come in pairs of synapsed bivalents. Multiple synapsis, that is, synapsis of more than two homologues in one and the same region, was virtually absent in the tetraploid. About five quadrivalents per cell occurred due to the switching of pairing partners. From the frequency of pairing partner switches it can be deduced that in most chromosomes synapsis is initiated primarily at one end, occasionally at both ends and rarely at an additional intercalary position. In contrast to a considerably reduced spore viability (approximately 40%) in the triploid, spore viability is only mildly affected in the tetraploid. The good spore viability is presumably due to the low frequency of quadrivalents and to the highly regular 2:2 segregation of the few quadrivalents that do occur. Occasionally, however, quadrivalents appear to be subject to 3:1 nondisjunction that leads to spore death in the second generation.


1997 ◽  
Vol 17 (8) ◽  
pp. 4718-4729 ◽  
Author(s):  
S Zhang ◽  
T J Burkett ◽  
I Yamashita ◽  
D J Garfinkel

SPT23 was isolated as a dosage-dependent suppressor of Ty-induced mutations in Saccharomyces cerevisiae. SPT23 shows considerable sequence homology with MGA2, a gene identified as a dosage-dependent suppressor of a snf2-imposed block on STA1 transcription in S. cerevisiae var. diastaticus. Although single mutations in either of these genes have only modest effects on cell growth, spt23 mga2 double mutants are inviable. Unlike SPT23, multicopy expression of a truncated form of MGA2 suppresses a narrow subset of Ty-induced mutations. SPT23/MGA2 and the SNF/SWI genes affect transcription of certain target genes in similar ways. Spt23p appears to be a rate-limiting component required for functional HIS4 expression of his4-912delta, a promoter insertion mutation induced by the Ty1-912 long terminal repeat. Furthermore, both Spt23p and Mga2p can activate transcription when fused to the Gal4p DNA-binding domain, as previously observed with Snf2p and Snf5p. A 50-amino-acid region in the N terminus of the predicted Spt23p protein is necessary and sufficient for the transactivation and necessary for suppression of Ty1-induced mutations and the essential function of Spt23p. Cell fractionation and cytological experiments suggest that Spt23p is associated with the nucleus. Our results suggest that SPT23/MGA2 affects transcription of a subset of genes in yeast, perhaps by changing chromatin accessibility.


Genetics ◽  
1999 ◽  
Vol 153 (4) ◽  
pp. 1547-1560
Author(s):  
Cesar E Guerra ◽  
David B Kaback

AbstractDuring meiosis, homologous chromosomes pair and then segregate from each other at the first meiotic division. Homologous centromeres appear to be aligned when chromosomes are paired. The role of centromere alignment in meiotic chromosome segregation was investigated in Saccharomyces cerevisiae diploids that contained one intact copy of chromosome I and one copy bisected into two functional centromere-containing fragments. The centromere on one fragment was aligned with the centromere on the intact chromosome while the centromere on the other fragment was either aligned or misaligned. Fragments containing aligned centromeres segregated efficiently from the intact chromosome, while fragments containing misaligned centromeres segregated much less efficiently from the intact chromosome. Less efficient segregation was correlated with crossing over in the region between the misaligned centromeres. Models that suggest that these crossovers impede proper segregation by preventing either a segregation-promoting chromosome alignment on the meiotic spindle or some physical interaction between homologous centromeres are proposed.


2021 ◽  
Author(s):  
Liangyu Zhang ◽  
Weston T Stauffer ◽  
Andrew Ziesel ◽  
John S Wang ◽  
Zhouliang Yu ◽  
...  

Meiotic chromosome segregation relies on synapsis and crossover recombination between homologous chromosomes. These processes require multiple steps that are coordinated by the meiotic cell cycle and monitored by surveillance mechanisms. In the nematode Caenorhabditis elegans, CHK-2 kinase is activated at meiotic entry; its activity is essential for homologous synapsis and DSB formation. CHK-2 is normally inactivated at mid-prophase, but how this occurs has not been established. Defects in synapsis or establishment of crossover intermediates delay meiotic progression by prolonging the activity of CHK-2. We report that CHK-2 is necessary and sufficient to inhibit crossover designation. We further find that CHK-2 is inactivated at mid-prophase by a pathway that mediates DNA damage checkpoint adaptation in proliferating human cells: Polo-like kinases, particularly PLK-2, phosphorylate and inhibit CHK-2 in response to formation of crossover intermediates. These findings help to illuminate the mechanisms of crossover assurance and meiotic cell cycle control.


Genetics ◽  
2001 ◽  
Vol 157 (1) ◽  
pp. 103-118 ◽  
Author(s):  
Janet R Mullen ◽  
Vivek Kaliraman ◽  
Samer S Ibrahim ◽  
Steven J Brill

Abstract The Saccharomyces cerevisiae Sgs1 protein is a member of the RecQ family of DNA helicases and is required for genome stability, but not cell viability. To identify proteins that function in the absence of Sgs1, a synthetic-lethal screen was performed. We obtained mutations in six complementation groups that we refer to as SLX genes. Most of the SLX genes encode uncharacterized open reading frames that are conserved in other species. None of these genes is required for viability and all SLX null mutations are synthetically lethal with mutations in TOP3, encoding the SGS1-interacting DNA topoisomerase. Analysis of the null mutants identified a pair of genes in each of three phenotypic classes. Mutations in MMS4 (SLX2) and SLX3 generate identical phenotypes, including weak UV and strong MMS hypersensitivity, complete loss of sporulation, and synthetic growth defects with mutations in TOP1. Mms4 and Slx3 proteins coimmunoprecipitate from cell extracts, suggesting that they function in a complex. Mutations in SLX5 and SLX8 generate hydroxyurea sensitivity, reduced sporulation efficiency, and a slow-growth phenotype characterized by heterogeneous colony morphology. The Slx5 and Slx8 proteins contain RING finger domains and coimmunoprecipitate from cell extracts. The SLX1 and SLX4 genes are required for viability in the presence of an sgs1 temperature-sensitive allele at the restrictive temperature and Slx1 and Slx4 proteins are similarly associated in cell extracts. We propose that the MMS4/SLX3, SLX5/8, and SLX1/4 gene pairs encode heterodimeric complexes and speculate that these complexes are required to resolve recombination intermediates that arise in response to DNA damage, during meiosis, and in the absence of SGS1/TOP3.


2019 ◽  
Vol 116 (37) ◽  
pp. 18423-18428 ◽  
Author(s):  
Huizhong Xu ◽  
Zhisong Tong ◽  
Qing Ye ◽  
Tengqian Sun ◽  
Zhenmin Hong ◽  
...  

During prophase I of meiosis, chromosomes become organized as loop arrays around the proteinaceous chromosome axis. As homologous chromosomes physically pair and recombine, the chromosome axis is integrated into the tripartite synaptonemal complex (SC) as this structure’s lateral elements (LEs). While the components of the mammalian chromosome axis/LE—including meiosis-specific cohesin complexes, the axial element proteins SYCP3 and SYCP2, and the HORMA domain proteins HORMAD1 and HORMAD2—are known, the molecular organization of these components within the axis is poorly understood. Here, using expansion microscopy coupled with 2-color stochastic optical reconstruction microscopy (STORM) imaging (ExSTORM), we address these issues in mouse spermatocytes at a resolution of 10 to 20 nm. Our data show that SYCP3 and the SYCP2 C terminus, which are known to form filaments in vitro, form a compact core around which cohesin complexes, HORMADs, and the N terminus of SYCP2 are arrayed. Overall, our study provides a detailed structural view of the meiotic chromosome axis, a key organizational and regulatory component of meiotic chromosomes.


Meiotic chromosome pairing is a process that is amenable to genetic and experimental analysis. The combined use of these two approaches allows for the process to be dissected into several finite periods of time in which the developmental stages of pairing can be precisely located. Evidence is now available, in particular in plants, that shows that the pairing of homologous chromosomes, as observed at metaphase I, is affected by events occurring as early as the last premeiotic mitosis; and that the maintenance of this early determined state is subsequently maintained by constituents (presumably proteins) that are sensitive to either colchicine, temperature or gene control. A critical assessment of this evidence in wheat and a comparison of the process of pairing in wheat with the course of meiotic pairing in other plants and animals is presented.


Genetics ◽  
2001 ◽  
Vol 158 (2) ◽  
pp. 563-572 ◽  
Author(s):  
Valmik K Vyas ◽  
Sergei Kuchin ◽  
Marian Carlson

Abstract The Snf1 protein kinase is essential for the transcription of glucose-repressed genes in Saccharomyces cerevisiae. We identified Nrg2 as a protein that interacts with Snf1 in the two-hybrid system. Nrg2 is a C2H2 zinc-finger protein that is homologous to Nrg1, a repressor of the glucose- and Snf1-regulated STA1 (glucoamylase) gene. Snf1 also interacts with Nrg1 in the two-hybrid system and co-immunoprecipitates with both Nrg1 and Nrg2 from cell extracts. A LexA fusion to Nrg2 represses transcription from a promoter containing LexA binding sites, indicating that Nrg2 also functions as a repressor. An Nrg1 fusion to green fluorescent protein is localized to the nucleus, and this localization is not regulated by carbon source. Finally, we show that VP16 fusions to Nrg1 and Nrg2 allow low-level expression of SUC2 in glucose-grown cells, and we present evidence that Nrg1 and Nrg2 contribute to glucose repression of the DOG2 gene. These results suggest that Nrg1 and Nrg2 are direct or indirect targets of the Snf1 kinase and function in glucose repression of a subset of Snf1-regulated genes.


Sign in / Sign up

Export Citation Format

Share Document