scholarly journals Thermal niche evolution across replicatedAnolislizard adaptive radiations

2016 ◽  
Author(s):  
Alex R. Gunderson ◽  
D. Luke Mahler ◽  
Manuel Leal

AbstractElucidating how ecological and evolutionary mechanisms interact to produce and maintain biodiversity is a fundamental problem in evolutionary ecology. We investigate this issue by focusing on how physiological evolution affects performance and species coexistence along the thermal niche axis in replicated radiations ofAnolislizards, groups best known for resource partitioning based on morphological divergence. We find repeated divergence in thermal physiology within these radiations, and that this divergence significantly affects performance within natural thermal environments. Morphologically similar species that co-occur invariably differ in their thermal physiology, providing evidence that physiological divergence facilitates species co-existence within anole communities. Despite repeated divergence in traits of demonstrable ecological importance, phylogenetic comparative analyses indicate that physiological traits have evolved more slowly than key morphological traits related to the structural niche. Phylogenetic analyses also reveal that physiological divergence is correlated with divergence in broad-scale habitat climatic features commonly used to estimate thermal niche evolution, but that the latter incompletely predicts variation in the former. We provide comprehensive evidence for repeated adaptive evolution of physiological divergence withinAnolisadaptive radiations, including the complementary roles of physiological and morphological divergence in promoting community-level diversity. We recommend greater integration of performance-based traits into analyses of climatic niche evolution, as they facilitate a more complete understanding of the phenotypic and ecological consequences of climatic divergence.

2018 ◽  
Vol 285 (1877) ◽  
pp. 20172241 ◽  
Author(s):  
Alex R. Gunderson ◽  
D. Luke Mahler ◽  
Manuel Leal

Elucidating how ecological and evolutionary mechanisms interact to produce and maintain biodiversity is a fundamental problem in evolutionary ecology. Here, we focus on how physiological evolution affects performance and species coexistence along the thermal niche axis in replicated radiations of Anolis lizards best known for resource partitioning based on morphological divergence. We find repeated divergence in thermal physiology within these radiations, and that this divergence significantly affects performance within natural thermal environments. Morphologically similar species that co-occur invariably differ in their thermal physiology, providing evidence that physiological divergence facilitates species coexistence within anole communities. Despite repeated divergence, phylogenetic comparative analyses indicate that physiological traits have evolved more slowly than key morphological traits related to the structural niche. Phylogenetic analyses also reveal that physiological divergence is correlated with divergence in broad-scale habitat climatic features commonly used to estimate thermal niche evolution, but that the latter incompletely predicts variation in the former. We provide comprehensive evidence for repeated adaptive evolution of physiological divergence within Anolis adaptive radiations, including the complementary roles of physiological and morphological divergence in promoting community-level diversity. We recommend greater integration of performance-based traits into analyses of climatic niche evolution, as they facilitate a more complete understanding of the phenotypic and ecological consequences of climatic divergence.


2017 ◽  
Author(s):  
Jonathan Rolland ◽  
◽  
Daniele Silvestro ◽  
Dolph Schluter ◽  
Antoine Guisan ◽  
...  

Phytotaxa ◽  
2018 ◽  
Vol 346 (2) ◽  
pp. 157
Author(s):  
C. BIJEESH ◽  
A. MANOJ KUMAR ◽  
K.B. VRINDA ◽  
C.K. PRADEEP

Two unusual species of Craterellus have been collected numerous times from the evergreen tropical forests in Kerala State, India. The species Craterellus albostrigosus and Craterellus inusitatus are described as new based on morphological and phylogenetic analyses of nrLSU-rDNA gene region. Complete morphological descriptions, photographs and comparisons with similar species are provided as well as a key to the known species of Craterellus from India.


Zootaxa ◽  
2021 ◽  
Vol 4995 (2) ◽  
pp. 334-344
Author(s):  
QIAN ZHOU ◽  
FAHUI TANG ◽  
YUANJUN ZHAO

During a survey of parasitic ciliates in Chongqing, China, Trichodina matsu Basson & Van As, 1994 was isolated from gills of Tachysurus fulvidraco. Furthermore, the 18S rRNA gene and ITS-5.8S rRNA region of T. matsu were sequenced for the first time and applied for the species identification and comparison with similar species in the present study. Based on the morphological and molecular comparisons, the results indicate that T. matsu is an ectoparasite specific for the Siluriformes catfish. Based on the analyses of genetic distance, multiple sequence alignments, and phylogenetic analyses, no obvious differentiation within populations of T. matsu was found. In addition, the ‘Trichodina hyperparasitis’ (KX904933) in GenBank is a misidentification and appears to be conspecific with T. matsu according to the comparison of morphological and molecular data.  


2021 ◽  
Vol 71 ◽  
pp. 55-74
Author(s):  
Juan José Torres-Ramírez ◽  
Teddy Angarita-Sierra ◽  
Mario Vargas-Ramírez

In northern South America, amphisbaenians are rarely seen among the herpetofauna.Thus, general knowledge about them is very poor. During a herpetological survey in 2012 at Casanare, Colombia, we found two specimens of an unusual Amphisbaena. A third specimen sharing the same morphotype labeled Amphisbaena sp. from Vichada department was found deposided in an Colombian reptile collection. Based on morphological analyses together with phylogenetic analyses of 1029 base pairs of the mitochondrial DNA (mtDNA), we describe a new species of Amphisbaena that inhabits in the Orinoquian region of Colombia. The new species is part of a phylogenetic clade together with A. mertensii and A. cunhai (central-southern Brazil), exhibiting a great genetic distance (26.1–28.9%) between the newly identified lineage versus those taxa, and versus the sympatric taxa A. alba and A. fuliginosa. Morphologically, this new Amphisbaena can be distinguished from their congeners by characters combination of number of preocloacal pores, absence of malar scale, postgenial scales and body and caudal annuli counts. Amphisbaena gracilis is on morphology grounds the most similar species. However, the new species can be distinguished from it by having higher body annuli counts, angulus ories aliegned with the edges of the ocular scales and center of frontal scales, less number of large middorsal segments of the first and second body annulus, and rostral scale visible from above. The description of this new Amphisbaena species points out the urgent need to increase the knowledge of worm lizards in Colombia


Phytotaxa ◽  
2021 ◽  
Vol 500 (1) ◽  
pp. 1-10
Author(s):  
MENG-LE XIE ◽  
TIE-ZHENG WEI ◽  
BÁLINT DIMA ◽  
YONG-PING FU ◽  
RUI-QING JI ◽  
...  

This study presents one telamonioid species new to science based on morphological characteristics and molecular phylogenetic analyses. Cortinarius khinganensis was collected from the Greater Khingan Mountains, Northeast China and it is characterized by hygrophanous, vivid brownish red and striate pileus, white universal veil, and subglobose spores. According to phylogenetic analyses results, C. khinganensis belongs to the section Illumini, which is a lineage distantly related from subgenus Telamonia sensu stricto. Detailed descriptions of the new species and the comparisons with morphologically similar species are provided. The phylogenetic relationships within the section Illumini are also discussed.


Phytotaxa ◽  
2021 ◽  
Vol 521 (1) ◽  
pp. 1-14
Author(s):  
JI-PENG LI ◽  
BIN SONG ◽  
ZHAN FENG ◽  
JING WANG ◽  
CHUN-YING DENG ◽  
...  

A new species of Gymnopus sect. Androsacei, namely, G. pallipes is described and illustrated based on morphological and molecular phylogenetic evidence. It is characterized by marasmioid basidiomata, a dark brown to reddish brown pileus becoming dull white to yellowish grey with age, whitish to pale yellow stipe and presence of rhizomorphs. Phylogenetic analyses support it as a new species within Gymnopus sect. Androsacei. The detailed morphological description, colour photos of basidiomata, and line drawings of microcharacters are presented and delimitation characters from similar species are discussed. A key to the known species of Gymnopus s. str. from China is also provided.


Phytotaxa ◽  
2021 ◽  
Vol 527 (2) ◽  
pp. 107-116
Author(s):  
MAN-TING LI ◽  
XIAO-ZHONG LAN ◽  
YOU-WEI ZUO ◽  
HONG-PING DENG

Euphorbia motuogensis M. T. Li, X. Z. Lan, H. P. Deng & W. L. Zheng, sp. nov., a new species from Motuo, Tibet, China, is described and illustrated here. It is closely similar to Euphorbia sikkimensis in having terete root, alternate leaves, well-developed pseudoumbellate inflorescence, cyathium, smooth and glaborus capsule, but Euphorbia motuogensis is clealy distinguishable by its pilose stems, involucral leaves color, secondary involucral leaves absent, cyathophylls number and color, and five similar glands. Furthermore, molecular phylogenetic analyses of sequences from both nuclear ribosomal ITS confirm that this species is distinct from morphologically similar species in this subgenus.


2019 ◽  
Vol 62 (1) ◽  
pp. 31-42
Author(s):  
Katharina Romoth ◽  
Petra Nowak ◽  
Daniela Kempke ◽  
Anna Dietrich ◽  
Christian Porsche ◽  
...  

Abstract Over recent decades, the neophyte Fucus evanescens has extended eastwards along the salinity gradient within the Baltic Sea, indicating gradual adaptation to low salinity conditions. To find out whether F. evanescens can migrate further into the Baltic Sea and potentially become a competitor to the native F. vesiculosus, the acclimation potentials of different F. evanescens and F. vesiculosus populations were investigated with respect to habitat salinity. For both species, pigmentation, water content, and photosynthetic rate were measured under laboratory and field conditions. The instantaneous measurement data and incubation experiment did not show clear differences in the measured photosynthetic parameters between different salinity levels (6–20), or between species. Maximum likelihood phylogenetic analyses of the nuclear marker PDI (a putative protein disulfide isomerase) separated F. vesiculosus and F. evanescens into well-defined groups supporting the hypothesis that the two very similar species do not represent different morphotypes of the same species/gene pool. These findings indicate that – at least for the vegetative stage of F. evanescens – salinity may not be a limiting factor for a further spread into the Baltic Sea.


Insects ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 324 ◽  
Author(s):  
Karin Kirchgatter ◽  
Lilian de Oliveira Guimarães ◽  
Henrry Hugo Yañez Trujillano ◽  
Fernando Rafael Arias ◽  
Abraham Cáceres ◽  
...  

Identification of mosquito species is necessary for determining the entomological components of malaria transmission, but it can be difficult in morphologically similar species. DNA sequences are largely used as an additional tool for species recognition, including those that belong to species complexes. Kerteszia mosquitoes are vectors of human and simian malaria in the Neotropical Region, but there are few DNA sequences of Kerteszia species in public databases. In order to provide relevant information about diversity and improve knowledge in taxonomy of Kerteszia species in Peru, we sequenced part of the mitochondrial genome, including the cytochrome c oxidase I (COI) barcode region. Phylogenetic analyses structured all species of mosquitoes collected in Peru into a single clade, separate from the Brazilian species. The Peruvian clade was composed of two lineages, encompassing sequences from Anopheles (Kerteszia) boliviensis and Anopheles (Kerteszia) pholidotus. An. pholidotus sequences were recorded for the first time in Peru, whereas An. boliviensis sequences were for the first time published in the GenBank database. Sequences generated from specimens morphologically identified as Anopheles (Kerteszia) cruzii clustered into three separate clades according to the collection localities of Serra do Mar, Serra da Mantiqueira, and Serra da Cantareira, confirming An. cruzii as a species complex, composed of at least three putative species.


Sign in / Sign up

Export Citation Format

Share Document