scholarly journals Temporal and spatial localization of prediction-error signals in the visual brain

2016 ◽  
Author(s):  
Patrick Johnston ◽  
Jonathan Robinson ◽  
Athanasios Kokkinakis ◽  
Samuel Ridgeway ◽  
Michael Simpson ◽  
...  

AbstractIt has been suggested that the brain pre-empts changes in the visual environment through generating predictions, although real-time eletrophysiological evidence of prediction violations remains elusive. In a series of experiments we showed participants sequences of images that followed a predictable implied sequence or whose final image violated the implied sequence. Through careful design we were able to use the same final image transitions across predictable and unpredictable conditions, ensuring that any differences in neural responses were due only to preceding context and not to the images themselves. EEG and MEG recordings showed that early/mid-latency visual evoked potentials were robustly modulated by images that violated the implied sequence across a range of types of image change (expression deformations, rigid-rotations and visual field location). This modulation occurred irrespective of stimulus object category. Although the stimuli were static images, MEG source reconstruction of the early latency signal (N/M170) localised expectancy violation signals to brain areas associated with motion perception. Our findings suggest that the N/M170 can index mismatches between predicted and actual visual inputs in a system that predicts trajectories based on ongoing context. This has important implications for understanding the N/M170 and investigating how the brain represents context to generate perceptual predictions.


2004 ◽  
Vol 91 (4) ◽  
pp. 1620-1634 ◽  
Author(s):  
Myrka Zago ◽  
Gianfranco Bosco ◽  
Vincenzo Maffei ◽  
Marco Iosa ◽  
Yuri P. Ivanenko ◽  
...  

Prevailing views on how we time the interception of a moving object assume that the visual inputs are informationally sufficient to estimate the time-to-contact from the object's kinematics. Here we present evidence in favor of a different view: the brain makes the best estimate about target motion based on measured kinematics and an a priori guess about the causes of motion. According to this theory, a predictive model is used to extrapolate time-to-contact from expected dynamics (kinetics). We projected a virtual target moving vertically downward on a wide screen with different randomized laws of motion. In the first series of experiments, subjects were asked to intercept this target by punching a real ball that fell hidden behind the screen and arrived in synchrony with the visual target. Subjects systematically timed their motor responses consistent with the assumption of gravity effects on an object's mass, even when the visual target did not accelerate. With training, the gravity model was not switched off but adapted to nonaccelerating targets by shifting the time of motor activation. In the second series of experiments, there was no real ball falling behind the screen. Instead the subjects were required to intercept the visual target by clicking a mousebutton. In this case, subjects timed their responses consistent with the assumption of uniform motion in the absence of forces, even when the target actually accelerated. Overall, the results are in accord with the theory that motor responses evoked by visual kinematics are modulated by a prior of the target dynamics. The prior appears surprisingly resistant to modifications based on performance errors.



Author(s):  
М.Н. Карпова ◽  
Л.В. Кузнецова ◽  
Н.Ю. Клишина ◽  
Л.А. Ветрилэ

Цель исследования. На 2 моделях острых генерализованных судорог (ОГС), вызванных конвульсантом пентилентетразолом (ПТЗ), изучить эффективность сочетанного применения ноотропа цитиколина - препарата с противосудорожным действием, нейрорегенеративной, нейропротекторной активностью и антител (АТ) к глутамату, обладающих противосудорожной активностью. Методика. Эксперименты выполнены на мышах-самцах линии C57Bl/6 (n = 87) массой 22-28 г. Эффективность сочетанного применения цитиколина и АТ к глутамату изучали на двух моделях ОГС. Выполнено 2 серии экспериментов. В 1-й серии ОГС вызывали внутривенным введением 1% раствора ПТЗ со скоростью 0,01 мл/с. Для изучения эффективности сочетанного применения препаратов определяли минимальное противосудорожное действие цитиколина (Цераксон, «Nicomed Ferrer Internaсional, S.A.») и АТ к глутамату при их внутрибрюшинном введении. С этой целью цитиколин вводили в дозах 500 и 300 мг/кг за 1 ч до введения ПТЗ, АТ к глутамату - в дозах 5 и 2,5 мг/кг за 1 ч 30 мин до введения ПТЗ. АТ к глутамату получали путем гипериммунизации кроликов соответствующим конъюгированным антигеном. Во 2-й серии ОГС вызывали подкожным введением ПТЗ в дозе 85 мг/кг. Для изучения эффективности сочетанного действия изучаемых препаратов последние вводили в минимально действующих дозах, установленных в 1-й серии экспериментов. Контролем во всех сериях опытов служили животные, которым вводили в аналогичных условиях и в том же объеме физиологический раствор. Результаты. Показано, что сочетанное применение цитиколина и АТ к глутамату в минимально действующих дозах (300 и 2,5 мг/кг соответственно) при моделировании ОГС не вызывало повышения судорожной активности мозга и усиления противосудорожных свойств препаратов. Заключение. Cочетанное применение цитиколина и АТ к глутамату в минимально действующих дозах не вызывало повышения судорожной активности мозга, что свидетельствует о безопасности совместного применения препаратов. Проведенное исследование может служить также экспериментальным обоснованием возможности использования сочетанного применения данных препаратов при судорогах с целью замедления прогрессирования нейродегенеративных процессов и благоприятного влияния на когнитивные функции. Aim. To study the effectivity of a combination of citicoline, a nootropic substance with neuroregenerative, neuroprotective, and anticonvulsant actions, and glutamate antibodies (АB) with an anticonvulsant action in two models of acute generalized convulsions (AGC) caused by the convulsant pentylenetetrazole (PTZ). Methods. Experiments were conducted on C57Bl/6 mice (n = 87) weighing 22-28 g. Effects of combined citicoline and glutamate АB were studied on two models of AGС. In the first series of experiments, AGС was induced by intravenous infusion of a 1% PTZ solution at 0.01 ml/sec. In the second series, AGС was induced by a subcutaneous injection of PTZ 85 mg/kg. To evaluate efficacy of the drug combination minimum intraperitoneal anticonvulsant doses of citicoline (Tserakson, Nicomed Ferrer Internacional, S.A.) and glutamate АB were determined. To this purpose, citicoline was administered at 500 and 300 mg/kg 1 h prior to PTZ, and glutamate АB was administered at 5 and 2.5 mg/kg 90 min prior to PTZ. Glutamate АB was obtained by hyperimmunization of rabbits with a respective conjugated antigen. In the second series of experiments, AGС was induced by a subcutaneous injection of PTZ 85 mg/kg. To evaluate the effect of the drug combination, the drugs were administered at the minimum effective doses determined in the first series of experiment. Control animals were injected with the same volume of saline in the same experimental conditions. Results. The combination of citicoline and glutamate AB used at minimum effective doses of 300 and 2.5 mg/kg, respectively, did not increase the seizure activity in the brain and enhanced anticonvulsant properties of the drugs in two models of AGС. Conclusion. The combination of citicoline and glutamate AT at minimum effective doses did not increase the convulsive activity in the brain, which supported safety of the drug combination. Besides, this study can serve as an experimental justification for using the drug combination in convulsions to favorably influence cognitive functions and slow progression of neurodegenerative processes.



2000 ◽  
Vol 662 ◽  
Author(s):  
Jenna L. Rickus ◽  
Esther Lan ◽  
Allan J. Tobin ◽  
Jeffery I. Zink ◽  
Bruce Dunn

AbstractThe amino acid glutamate is the major excitatory neurotransmitter used in the nervous system for interneuronal communication. It is used throughout the brain by various neuronal pathways including those involved in learning and memory, locomotion, and sensory perception. Because glutamate is released from neurons on a millisecond time scale into sub-micrometer spaces, the development of a glutamate biosensor with high temporal and spatial resolution is of great interest for the study of neurological function and disease. Here, we demonstrate the feasibility of an optical glutamate sensor based on the sol-gel encapsulation of the enzyme glutamate dehydrogenase (GDH). GDH catalyses the oxidative deamination of glutamate and the reduction of NAD+ to NADH. NADH fluorescence is the basis of the sensor detection. Thermodynamic and kinetic studies show that GDH remains active in the sol-gel matrix and that the reaction rate is correlated to the glutamate concentration.



2020 ◽  
Vol 49 (1) ◽  
pp. E2 ◽  
Author(s):  
Kai J. Miller ◽  
Dora Hermes ◽  
Nathan P. Staff

Brain–computer interfaces (BCIs) provide a way for the brain to interface directly with a computer. Many different brain signals can be used to control a device, varying in ease of recording, reliability, stability, temporal and spatial resolution, and noise. Electrocorticography (ECoG) electrodes provide a highly reliable signal from the human brain surface, and these signals have been used to decode movements, vision, and speech. ECoG-based BCIs are being developed to provide increased options for treatment and assistive devices for patients who have functional limitations. Decoding ECoG signals in real time provides direct feedback to the patient and can be used to control a cursor on a computer or an exoskeleton. In this review, the authors describe the current state of ECoG-based BCIs that are approaching clinical viability for restoring lost communication and motor function in patients with amyotrophic lateral sclerosis or tetraplegia. These studies provide a proof of principle and the possibility that ECoG-based BCI technology may also be useful in the future for assisting in the cortical rehabilitation of patients who have suffered a stroke.



Analyzing the brain regions for different activations corresponding to the activation input for an experimental setup of task functional MRI or a resting state functional Magnetic Resonance Imaging(fMRI) for a diagnosed or healthy control is a challenging issue as the processing data is voluminous 4D data with nearly 1,51,552 voxels for a single volume of 261 scans fMRI. The data considered for analysis consists of 10 healthy controls and 10 Attention Deficit Hyperactivity Disorder(ADHD) fMRI. The workflow starts with preprocessing the individual scan for realignment, coregistration and Normalisation to Montreal Neurological Institute (MNI) space. Single site scan visit consists of 64x64x37 voxels. Seventy independent components are obtained from processed data by data reduction, Independent Component Analysis (ICA) calculation, Back reconstruction and Component Calibration. ICA performs satisfactorily well on temporal and spatial localization. Visual medial network activation is pronounced in ADHD Controls than in healthy people. Sagittal, Axial and Coronal view of ADHD controls is obtained as component number 42.The analysis is further used for the automatic classification of healthy controls and ADHD people.



1888 ◽  
Vol 43 (258-265) ◽  
pp. 276-276

This paper contains a record of a series of experiments on the brain of monkeys, which consisted in the establishment of definite lesions of the occipital and temporal lobes, and the observation of the results of such lesions. Drawings showing exactly the extent of the lesion in each case accompany the paper.



2020 ◽  
Vol 30 (9) ◽  
pp. 4871-4881 ◽  
Author(s):  
Katharine A Shapcott ◽  
Joscha T Schmiedt ◽  
Kleopatra Kouroupaki ◽  
Ricardo Kienitz ◽  
Andreea Lazar ◽  
...  

Abstract In order for organisms to survive, they need to detect rewarding stimuli, for example, food or a mate, in a complex environment with many competing stimuli. These rewarding stimuli should be detected even if they are nonsalient or irrelevant to the current goal. The value-driven theory of attentional selection proposes that this detection takes place through reward-associated stimuli automatically engaging attentional mechanisms. But how this is achieved in the brain is not very well understood. Here, we investigate the effect of differential reward on the multiunit activity in visual area V4 of monkeys performing a perceptual judgment task. Surprisingly, instead of finding reward-related increases in neural responses to the perceptual target, we observed a large suppression at the onset of the reward indicating cues. Therefore, while previous research showed that reward increases neural activity, here we report a decrease. More suppression was caused by cues associated with higher reward than with lower reward, although neither cue was informative about the perceptually correct choice. This finding of reward-associated neural suppression further highlights normalization as a general cortical mechanism and is consistent with predictions of the value-driven attention theory.



2020 ◽  
pp. 1-9 ◽  
Author(s):  
Richard A. Bryant ◽  
Elpiniki Andrew ◽  
Mayuresh S. Korgaonkar

Abstract Background Prolonged grief disorder (PGD) has recently been recognized as a separate psychiatric diagnosis, despite controversy over the extent to which it is distinctive from posttraumatic stress disorder (PTSD) and major depressive disorder (MDD). Methods This study investigated distinctive neural processes underpinning emotion processing in participants with PGD, PTSD, and MDD with functional magnetic resonance study of 117 participants that included PGD (n = 21), PTSD (n = 45), MDD (n = 26), and bereaved controls (BC) (n = 25). Neural responses were measured across the brain while sad, happy, or neutral faces were presented at both supraliminal and subliminal levels. Results PGD had greater activation in the pregenual anterior cingulate cortex (pgACC), bilateral insula, bilateral dorsolateral prefrontal cortices and right caudate and also greater pgACC–right pallidum connectivity relative to BC during subliminal processing of happy faces. PGD was distinct relative to both PTSD and MDD groups with greater recruitment of the medial orbitofrontal cortex during supraliminal processing of sad faces. PGD were also distinct relative to MDD (but not PTSD) with greater activation in the left amygdala, caudate, and putamen during subliminal presentation of sad faces. There was no distinction between PGD, PTSD, and MDD during processing of happy faces. Conclusions These results provide initial evidence of distinct neural profiles of PGD relative to related psychopathological conditions, and highlight activation of neural regions implicated in reward networks. This pattern of findings validates current models of PGD that emphasize the roles of yearning and appetitive processes in PGD.



1967 ◽  
Vol 25 (1) ◽  
pp. 189-202 ◽  
Author(s):  
Kristian Holt-Hansen

An attempt was made to present an electronic model of the neural correlate to the experiences of straightness and circularity on the basis of experimental data. Two sets of experiments were described. In one Ss had numerous kinds of experience when the stimulus object was a straight line or a circle. These experiments demonstrated a close relationship between a straight line and a circle in experience. The other set of experiments consisted of adjusting the electric voltages fed into a cathode ray oscilloscope so that the displays on the screen corresponded closely to some of the experiences reported by subjects in the first set of experiments. A plausible working hypothesis was put forward on the basis that the electronic functions underlying the working of a cathode ray oscilloscope suggest a close analogy with the brain function underlying the experiences obtained when the stimulus object is a straight line or a circle.



Sign in / Sign up

Export Citation Format

Share Document