scholarly journals Ancient coding sequences underpin the spatial patterning of gene expression in C4 leaves

2016 ◽  
Author(s):  
Ivan Reyna-Llorens ◽  
Steven J. Burgess ◽  
Ben P. Williams ◽  
Susan Stanley ◽  
Chris Boursnell ◽  
...  

AbstractPhotosynthesis is compromised in most plants because an enzymatic side-reaction fixes O2 instead of CO2. The energetic cost of oxygenation led to the evolution of C4 photosynthesis. In almost all C4 leaves compartmentation of photosynthesis between cells reduces oxygenation and so increases photosynthetic efficiency. Here we report that spatial expression of most C4 genes is controlled by intragenic cis-elements rather than promoter sequence. Two DNA motifs that cooperatively specify the patterning of genes required for C4 photosynthesis are identified. They are conserved in plants and algae that use the ancestral C3 pathway. As these motifs are located in exons they represent duons determining both gene expression and amino acid sequence. Our findings provide functional evidence for the importance of transcription factors recognising coding sequence as previously defined by genome-wide binding studies. Furthermore, they indicate that C4 evolution is based on ancient DNA motifs found in exonic sequence.

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Lin Zhang ◽  
Zhiqiang Song ◽  
Fangfang Li ◽  
Xixi Li ◽  
Haikun Ji ◽  
...  

Abstract Background Drought stress is one of the major abiotic stresses that affects plant growth and productivity. The GAPCp genes play important roles in drought stress tolerance in multiple species. The aim of this experiment was to identify the core cis-regulatory elements that may respond to drought stress in the GAPCp2 and GAPCp3 promoter sequences. Results In this study, the promoters of GAPCp2 and GAPCp3 were cloned. The promoter activities were significantly improved under abiotic stress via regulation of Rluc reporter gene expression, while promoter sequence analysis indicated that these fragments were not almost identical. In transgenic Arabidopsis with the expression of the GUS reporter gene under the control of one of these promoters, the activities of GUS were strong in almost all tissues except the seeds, and the activities were induced after abiotic stress. The yeast one-hybrid system and EMSA demonstrated that TaMYB bound TaGAPCp2P/3P. By analyzing different 5′ deletion mutants of these promoters, it was determined that TaGAPCp2P (− 1312~ − 528) and TaGAPCp3P (− 2049~ − 610), including the MYB binding site, contained enhancer elements that increased gene expression levels under drought stress. We used an effector and a reporter to co-transform tobacco and found that TaMYB interacted with the specific MYB binding sites of TaGAPCp2P (− 1197~ − 635) and TaGAPCp3P (− 1456~ − 1144 and − 718~ − 610) in plant cells. Then, the Y1H system and EMSA assay demonstrated that these MYB binding sites in TaGAPCp2P (− 1135 and − 985) and TaGAPCp3P (− 1414 and − 665) were the target cis-elements of TaMYB. The deletion of the specific MYB binding sites in the promoter fragments significantly restrained the drought response, and these results confirmed that these MYB binding sites (AACTAAA/C) play vital roles in improving the transcription levels under drought stress. The results of qRT-PCR in wheat protoplasts transiently overexpressing TaMYB indicated that the expression of TaGAPCp2/3 induced by abiotic stress was upregulated by TaMYB. Conclusion The MYB binding sites (AACTAAA/C) in TaGAPCp2P/3P were identified as the key cis-elements for responding to drought stress and were bound by the transcription factor TaMYB.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 41 ◽  
Author(s):  
Peter A. Combs ◽  
Michael B. Eisen

Patterning in the Drosophila melanogaster embryo is affected by multiple maternal factors, but the effect of these factors on spatial gene expression has not been systematically analyzed. Here we characterize the effect of the maternal factors Zelda, Hunchback and Bicoid by cryosectioning wildtype and mutant blastoderm stage embryos and sequencing mRNA from each slice. The resulting atlas of spatial gene expression highlights the intersecting roles of these factors in regulating spatial patterns, and serves as a resource for researchers studying spatial patterning in the early embryo. We identify a large number of genes with both expected and unexpected patterning changes, and through integrated analysis of transcription factor binding data identify common themes in genes with complex dependence on these transcription factors.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Yong Zhou ◽  
Lifang Hu ◽  
Hao Wu ◽  
Lunwei Jiang ◽  
Shiqiang Liu

Superoxide dismutase (SOD) proteins are widely present in the plant kingdom and play important roles in different biological processes. However, little is known about the SOD genes in cucumber. In this study, night SOD genes were identified from cucumber (Cucumis sativus) using bioinformatics-based methods, including 5 Cu/ZnSODs, 3 FeSODs, and 1 MnSOD. Gene structure and motif analysis indicated that most of the SOD genes have relatively conserved exon/intron arrangement and motif composition. Phylogenetic analyses with SODs from cucumber and several other species revealed that these SOD proteins can be traced back to two ancestral SODs before the divergence of monocot and dicot plants. Many cis-elements related to stress responses and plant hormones were found in the promoter sequence of each CsSOD gene. Gene expression analysis revealed that most of the CsSOD genes are expressed in almost all the tested tissues. qRT-PCR analysis of 8 selected CsSOD genes showed that these genes could respond to heat, cold, osmotic, and salt stresses. Our results provide a basis for further functional research on SOD gene family in cucumber and facilitate their potential applications in the genetic improvement of cucumber.


Sign in / Sign up

Export Citation Format

Share Document