scholarly journals Polarity sensitive probes for super resolution STED microscopy

2017 ◽  
Author(s):  
E Sezgin ◽  
F Schneider ◽  
V Zilles ◽  
E Garcia ◽  
D Waithe ◽  
...  

AbstractThe lateral organization of molecules in the cellular plasma membrane plays an important role in cellular signaling. A critical parameter for membrane molecular organization is how the membrane lipids are packed (or ordered). Polarity sensitive dyes are powerful tools to characterize such lipid membrane order, employing for example confocal and two-photon microscopy. The investigation of potential lipid nanodomains, however, requires the use of super resolution microscopy. Here, we test the performance of the polarity sensitive membrane dyes Di-4-ANEPPDHQ, Di-4-AN(F)EPPTEA and NR12S in super resolution STED microscopy. Measurements on cell-derived membrane vesicles, in the plasma membrane of live cells, and on single virus particles show the high potential of these dyes for probing nanoscale membrane heterogeneity.

2021 ◽  
Author(s):  
Pablo Carravilla ◽  
Anindita Dasgupta ◽  
Gaukhar Zhurgenbayeva ◽  
Dmytro I. Danylchuk ◽  
Andrey S. Klymchenko ◽  
...  

Understanding the plasma membrane nano-scale organisation and dynamics in living cells requires microscopy techniques with high temporal and spatial resolution and long acquisition times, that also allow for the quantification of membrane biophysical properties such as lipid ordering. Among the most popular super-resolution techniques, stimulated emission depletion (STED) microscopy offers one of the highest temporal resolution, ultimately defined by the scanning speed. However, monitoring live processes using STED microscopy is significantly limited by photobleaching, which recently has been circumvented by exchangeable membrane dyes that only temporarily reside in the membrane. Here, we show that NR4A, a polarity-sensitive exchangeable plasma membrane probe based on Nile Red, permits the super-resolved quantification of membrane biophysical parameters in real time with high temporal and spatial resolution as well as long acquisition times. The potential of this polarity-sensitive exchangeable dyes is showcased by live-cell real-time 3D-STED recordings of bleb formation and lipid exchange during membrane fusion, as well as by STED-fluorescence correlation spectroscopy (STED-FCS) experiments for the simultaneous quantification of membrane dynamics and lipid packing, which correlate in model and live-cell membranes.


2012 ◽  
Vol 53 ◽  
pp. 15-27 ◽  
Author(s):  
Michael P. Krahn ◽  
Andreas Wodarz

Many cell types in animals and plants are polarized, which means that the cell is subdivided into functionally and structurally distinct compartments. Epithelial cells, for example, possess an apical side facing a lumen or the outside environment and a basolateral side facing adjacent epithelial cells and the basement membrane. Neurons possess distinct axonal and dendritic compartments with specific functions in sending and receiving signals. Migrating cells form a leading edge that actively engages in pathfinding and cell-substrate attachment, and a trailing edge where such attachments are abandoned. In all of these cases, both the plasma membrane and the cytocortex directly underneath the plasma membrane show differences in their molecular composition and structural organization. In this chapter we will focus on a specific type of membrane lipids, the phosphoinositides, because in polarized cells they show a polarized distribution in the plasma membrane. They furthermore influence the molecular organization of the cytocortex by recruiting specific protein binding partners which are involved in the regulation of the cytoskeleton and in signal transduction cascades that control polarity, growth and cell migration.


2009 ◽  
Vol 424 (2) ◽  
pp. 163-167 ◽  
Author(s):  
Ilya Levental ◽  
Fitzroy J. Byfield ◽  
Pramit Chowdhury ◽  
Feng Gai ◽  
Tobias Baumgart ◽  
...  

Cell-derived GPMVs (giant plasma-membrane vesicles) enable investigation of lipid phase separation in a system with appropriate biological complexity under physiological conditions, and in the present study were used to investigate the cholesterol-dependence of domain formation and stability. The cholesterol level is directly related to the abundance of the liquid-ordered phase fraction, which is the majority phase in vesicles from untreated cells. Miscibility transition temperature depends on cholesterol and correlates strongly with the presence of detergent-insoluble membrane in cell lysates. Fluorescence correlation spectroscopy reveals two distinct diffusing populations in phase-separated cell membrane-derived vesicles whose diffusivities correspond well to diffusivities in both model systems and live cells. The results of the present study extend previous observations in purified lipid systems to the complex environment of the plasma membrane and provide insight into the effect of cholesterol on lipid phase separation and abundance.


2012 ◽  
Vol 51 (20) ◽  
pp. 4868-4871 ◽  
Author(s):  
Stephan Wilmes ◽  
Markus Staufenbiel ◽  
Domenik Liße ◽  
Christian P. Richter ◽  
Oliver Beutel ◽  
...  

2012 ◽  
Vol 124 (20) ◽  
pp. 4952-4955 ◽  
Author(s):  
Stephan Wilmes ◽  
Markus Staufenbiel ◽  
Domenik Liße ◽  
Christian P. Richter ◽  
Oliver Beutel ◽  
...  

2019 ◽  
Vol 116 (3) ◽  
pp. 164a-165a
Author(s):  
Sarah A. Shelby ◽  
Ivan C. Serrano ◽  
Kandice R. Levental ◽  
Ilya Levental ◽  
Sarah L. Veatch

Viruses ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 415 ◽  
Author(s):  
Iztok Urbančič ◽  
Juliane Brun ◽  
Dilip Shrestha ◽  
Dominic Waithe ◽  
Christian Eggeling ◽  
...  

Human Immunodeficiency Virus type-1 (HIV-1) acquires its lipid membrane from the plasma membrane of the infected cell from which it buds out. Previous studies have shown that the HIV-1 envelope is an environment of very low mobility, with the diffusion of incorporated proteins two orders of magnitude slower than in the plasma membrane. One of the reasons for this difference is thought to be the HIV-1 membrane composition that is characterised by a high degree of rigidity and lipid packing, which has, until now, been difficult to assess experimentally. To further refine the model of the molecular mobility on the HIV-1 surface, we herein investigated the relative importance of membrane composition and curvature in simplified model membrane systems, large unilamellar vesicles (LUVs) of different lipid compositions and sizes (0.1–1 µm), using super-resolution stimulated emission depletion (STED) microscopy-based fluorescence correlation spectroscopy (STED-FCS). Establishing an approach that is also applicable to measurements of molecule dynamics in virus-sized particles, we found, at least for the 0.1–1 µm sized vesicles, that the lipid composition and thus membrane rigidity, but not the curvature, play an important role in the decreased molecular mobility on the vesicles’ surface. This observation suggests that the composition of the envelope rather than the particle geometry contributes to the previously described low mobility of proteins on the HIV-1 surface. Our vesicle-based study thus provides further insight into the dynamic properties of the surface of individual HIV-1 particles, as well as paves the methodological way towards better characterisation of the properties and function of viral lipid envelopes in general.


2000 ◽  
Vol 28 (6) ◽  
pp. 905-907 ◽  
Author(s):  
A. H. Berglund ◽  
M. F. Quartacci ◽  
C. Liljenberg

Wheat seedlings were grown hydroponically in the presence of 50 μM Cu2+. The copper stress resulted in plasma-membrane (PM) changes of the root cells as altered lipid composition, a decreased phosphatidylcholine (PC)/phosphatidylethanolamine (PE) ratio from 0.7 to 0.3, a decreased fatty acyl unsaturation and a decrease in the lipid/protein ratio. Membrane vesicles made from total lipid extracts of isolated PMs of wheat grown under copper excess showed a remarkably low permeability to polar molecules like glucose, as compared with the control, and no difference in proton permeability. Permeability studies of vesicles of plasma-membrane lipids, which were selectively modified by addition of specific lipids such as PC and PE, were also performed. The results are discussed with emphasis on the role of the increased PE proportion.


2021 ◽  
Author(s):  
gangwei jiang ◽  
Tian-Bing Ren ◽  
Elisa D’Este ◽  
mengyi xiong ◽  
Bin Xiong ◽  
...  

Abstract The quality and application of super-resolution fluorescence imaging greatly lie in the properties of fluorescent probes. However, conventional fluorophores in a cellular environment often suffer from low brightness, poor photostability, and short Stokes shift (< 30 nm). Here we report a synergistic strategy to simultaneously improve such properties of regular fluorophores. Introduction of quinoxaline motif with fine-tuned electron density to conventional rhodamines generates new dyes with vibronic structure and inhibited twisted-intramolecular-charge-transfer (TICT) formation synchronously, thus increasing the brightness and photostability as well as Stokes shift. The new fluorophore BDQF-6 exhibits around twofold greater brightness (ε × Φ = 6.6 × 104 L·mol− 1·cm− 1) and Stokes shift (56 nm) than its parental fluorophore, Rhodamine B. Importantly, in Stimulated Emission Depletion (STED) microscopy, BDQF-6 derived probe possesses a superior photostability and thus renders threefold more frames than carbopyronine- and JF608-based probes, known as photostable fluorophores for STED imaging. More BDQF-6 derivatives were developed next, allowing us to perform wash-free organelles (mitochondria and lysosome) staining and protein labeling with ultrahigh signal-to-noise ratios (up to 106 folds) in confocal and STED microscopy of live cells, or two-photon and 3D STED microscopy of fixed cells. Furthermore, the strategy was well generalized to different types of dyes (pyronin, rhodol, coumarin, and Boranil), offering a new class of bright and photostable fluorescent probes with long Stokes shift (up to 136 nm) for bioimaging and biosensing.


2016 ◽  
Author(s):  
Falk Schneider ◽  
Mathias P Clausen ◽  
Dominic Waithe ◽  
Thomas Koller ◽  
Gunes Ozhan ◽  
...  

Diffusion and interaction dynamics of molecules at the plasma membrane play an important role in cellular signalling. These have been suggested to be strongly associated with the actin cytoskeleton. Here, we utilise super-resolution STED microscopy combined with fluorescence correlation spectroscopy (STED-FCS) to access the sub-diffraction diffusion regime of different fluorescent lipid analogues and GPI-anchored proteins (GPI-APs) in the cellular plasma membrane, and compare it to the diffusion regime of these molecules in cell-derived actin-free giant plasma membrane vesicles (GPMVs). We show that phospholipids and sphingomyelin, which undergo hindered diffusion in the live cell membrane, diffuse freely in the GPMVs. In contrast to sphingomyelin, which is transiently trapped on molecular-scale complexes in intact cells, diffusion of the ganglioside lipid GM1 suggests transient incorporation into nanodomains, which is less influenced by the actin cortex. Finally, our data on GPI-APs indicate two molecular pools in living cells, one pool showing high mobility with trapped and compartmentalized diffusion, and the other forming immobile clusters both of which disappear in GPMVs. Our data underlines the crucial role of the actin cortex in maintaining hindered diffusion modes of most but not all membrane molecules.


Sign in / Sign up

Export Citation Format

Share Document