scholarly journals Small molecule inhibition of apicomplexan FtsH1 disrupts plastid biogenesis in human pathogens

2017 ◽  
Author(s):  
Katherine Amberg-Johnson ◽  
Sanjay B. Hari ◽  
Suresh M. Ganesan ◽  
Hernan A. Lorenzi ◽  
Robert T. Sauer ◽  
...  

The malaria parasitePlasmodium falciparumand related apicomplexan pathogens contain an essential plastid organelle, the apicoplast, which is a key anti-parasitic target. Derived from secondary endosymbiosis, the apicoplast depends on novel, but largely cryptic, mechanisms for protein/lipid import and organelle inheritance during parasite replication. These critical biogenesis pathways present untapped opportunities to discover new parasite-specific drug targets. We used an innovative screen to identify actinonin as having a novel mechanism-of-action inhibiting apicoplast biogenesis. Resistant mutation, chemical-genetic interaction, and biochemical inhibition demonstrate that the unexpected target of actinonin inP. falciparumandToxoplasma gondiiis FtsH1, a homolog of a bacterial membrane AAA+ metalloprotease.PfFtsH1 is the first novel factor required for apicoplast biogenesis identified in a phenotypic screen. Our findings demonstrate that FtsH1 is a novel and, importantly, druggable antimalarial target. Development of FtsH1 inhibitors will have significant advantages with improved drug kinetics and multistage efficacy against multiple human parasites.

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Katherine Amberg-Johnson ◽  
Sanjay B Hari ◽  
Suresh M Ganesan ◽  
Hernan A Lorenzi ◽  
Robert T Sauer ◽  
...  

The malaria parasite Plasmodium falciparum and related apicomplexan pathogens contain an essential plastid organelle, the apicoplast, which is a key anti-parasitic target. Derived from secondary endosymbiosis, the apicoplast depends on novel, but largely cryptic, mechanisms for protein/lipid import and organelle inheritance during parasite replication. These critical biogenesis pathways present untapped opportunities to discover new parasite-specific drug targets. We used an innovative screen to identify actinonin as having a novel mechanism-of-action inhibiting apicoplast biogenesis. Resistant mutation, chemical-genetic interaction, and biochemical inhibition demonstrate that the unexpected target of actinonin in P. falciparum and Toxoplasma gondii is FtsH1, a homolog of a bacterial membrane AAA+ metalloprotease. PfFtsH1 is the first novel factor required for apicoplast biogenesis identified in a phenotypic screen. Our findings demonstrate that FtsH1 is a novel and, importantly, druggable antimalarial target. Development of FtsH1 inhibitors will have significant advantages with improved drug kinetics and multistage efficacy against multiple human parasites.


2019 ◽  
Vol 18 (23) ◽  
pp. 2008-2021 ◽  
Author(s):  
Snigdha Singh ◽  
Neha Sharma ◽  
Charu Upadhyay ◽  
Sumit Kumar ◽  
Brijesh Rathi ◽  
...  

Malaria is a lethal disease causing devastating global impact by killing more than 8,00,000 individuals yearly. A noticeable decline in malaria related deaths can be attributed to the most reliable treatment, ACTs against P. falciparum. However, the cumulative resistance of the malaria parasite against ACTs is a global threat to control the disease and, therefore the new effective therapeutics are urgently needed, including new treatment approaches. Majority of the antimalarial drugs target BS malarial infection. Currently, scientists are eager to explore the drugs with potency against not only BS but other life stages such as sexual and asexual stages of the malaria parasite. Liver Stage is considered as one of the important drug targets as it always leads to BS and the infection can be cured at this stage before it enters into the Blood Stage. However, a limited number of compounds are reported effective against LS malaria infection probably due to scarcity of in vitro LS culture methods and clinical possibilities. This mini review covers a range of chemical compounds showing efficacy against BS and LS of the malaria parasite’s life cycle collectively (i.e. dual stage activity). These scaffolds targeting dual stages are essential for the eradication of malaria and to evade resistance.


2017 ◽  
Vol 34 (7) ◽  
pp. 1251-1252 ◽  
Author(s):  
Justin Nelson ◽  
Scott W Simpkins ◽  
Hamid Safizadeh ◽  
Sheena C Li ◽  
Jeff S Piotrowski ◽  
...  

2014 ◽  
Vol 70 (a1) ◽  
pp. C432-C432
Author(s):  
George Minasov ◽  
Salvatore Nocadello ◽  
Ekaterina Filippova ◽  
Andrei Halavaty ◽  
Wayne Anderson

The Center for Structural Genomics for Infectious Diseases (CSGID) applies structural genomics approaches to biomedically important proteins from human pathogens. It also provides the infectious disease community with a high throughput pipeline for structure determination that carries out all steps of the process, from target selection through structure deposition. Target proteins include drug targets, essential enzymes, virulence factors and vaccine candidates. The CSGID has deposited over 680 structures in the Protein Data Bank. The proteins that are exposed on the surface of Gram positive bacterial pathogens (including Staphylococcus aureus, Bacillus anthracis, Listeria monocytogenes, Streptococcus species and Clostridium species) have been one focus area for the CSGID. So far, the structures of more than 55 of these proteins have been determined. The surface proteins are important in the interactions between the pathogen and its host, but many of them are as yet functionally uncharacterized. Among the examples that will be presented is the Bacillus anthracis SpoIID protein. SpoIID is part of a coordinated cell wall degradation machine that is essential for sporulation and the morphological changes involved. It represents a new family of lytic transglycosylases that degrade the glycan strands of the peptidoglycan cell wall. The two active site clefts in the dimeric enzyme include residues from both subunits, suggesting that the dimer is required for activity. This project has been funded in whole or in part with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contracts No. HHSN272200700058C and HHSN272201200026C.


2020 ◽  
Vol 295 (50) ◽  
pp. 16906-16919
Author(s):  
Jae-Hong Kim ◽  
Yeojin Seo ◽  
Myungjin Jo ◽  
Hyejin Jeon ◽  
Young-Seop Kim ◽  
...  

Kinases are critical components of intracellular signaling pathways and have been extensively investigated with regard to their roles in cancer. p21-activated kinase-1 (PAK1) is a serine/threonine kinase that has been previously implicated in numerous biological processes, such as cell migration, cell cycle progression, cell motility, invasion, and angiogenesis, in glioma and other cancers. However, the signaling network linked to PAK1 is not fully defined. We previously reported a large-scale yeast genetic interaction screen using toxicity as a readout to identify candidate PAK1 genetic interactions. En masse transformation of the PAK1 gene into 4,653 homozygous diploid Saccharomyces cerevisiae yeast deletion mutants identified ∼400 candidates that suppressed yeast toxicity. Here we selected 19 candidate PAK1 genetic interactions that had human orthologs and were expressed in glioma for further examination in mammalian cells, brain slice cultures, and orthotopic glioma models. RNAi and pharmacological inhibition of potential PAK1 interactors confirmed that DPP4, KIF11, mTOR, PKM2, SGPP1, TTK, and YWHAE regulate PAK1-induced cell migration and revealed the importance of genes related to the mitotic spindle, proteolysis, autophagy, and metabolism in PAK1-mediated glioma cell migration, drug resistance, and proliferation. AKT1 was further identified as a downstream mediator of the PAK1-TTK genetic interaction. Taken together, these data provide a global view of PAK1-mediated signal transduction pathways and point to potential new drug targets for glioma therapy.


mBio ◽  
2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Marta Walczak ◽  
Suresh M. Ganesan ◽  
Jacquin C. Niles ◽  
Ellen Yeh

ABSTRACT Plasmodium parasites and related pathogens contain an essential nonphotosynthetic plastid organelle, the apicoplast, derived from secondary endosymbiosis. Intriguingly, a highly conserved eukaryotic protein, autophagy-related protein 8 (ATG8), has an autophagy-independent function in the apicoplast. Little is known about the novel apicoplast function of ATG8 and its importance in blood-stage Plasmodium falciparum. Using a P. falciparum strain in which ATG8 expression was conditionally regulated, we showed that P. falciparum ATG8 (PfATG8) is essential for parasite replication. Significantly, growth inhibition caused by the loss of PfATG8 was reversed by addition of isopentenyl pyrophosphate (IPP), which was previously shown to rescue apicoplast defects in P. falciparum. Parasites deficient in PfATG8, but whose growth was rescued by IPP, had lost their apicoplast. We designed a suite of functional assays, including a new fluorescence in situ hybridization (FISH) method for detection of the low-copy-number apicoplast genome, to interrogate specific steps in apicoplast biogenesis and detect apicoplast defects which preceded the block in parasite replication. Though protein import and membrane expansion of the apicoplast were unaffected, the apicoplast was not inherited by daughter parasites. Our findings demonstrate that, though multiple autophagy-dependent and independent functions have been proposed for PfATG8, only its role in apicoplast biogenesis is essential in blood-stage parasites. We propose that PfATG8 is required for fission or segregation of the apicoplast during parasite replication. IMPORTANCE Plasmodium parasites, which cause malaria, and related apicomplexan parasites are important human and veterinary pathogens. They are evolutionarily distant from traditional model organisms and possess a unique plastid organelle, the apicoplast, acquired by an unusual eukaryote-eukaryote endosymbiosis which established novel protein/lipid import and organelle inheritance pathways in the parasite cell. Though the apicoplast is essential for parasite survival in all stages of its life cycle, little is known about these novel biogenesis pathways. We show that malaria parasites have adapted a highly conserved protein required for macroautophagy in yeast and mammals to function specifically in apicoplast inheritance. Our finding elucidates a novel mechanism of organelle biogenesis, essential for pathogenesis, in this divergent branch of pathogenic eukaryotes.


Sign in / Sign up

Export Citation Format

Share Document