Abstract IA20: Chemical-genetic interaction maps for precision therapies in breast and ovarian cancers

Author(s):  
Sourav Bandyopadhyay
2017 ◽  
Vol 34 (7) ◽  
pp. 1251-1252 ◽  
Author(s):  
Justin Nelson ◽  
Scott W Simpkins ◽  
Hamid Safizadeh ◽  
Sheena C Li ◽  
Jeff S Piotrowski ◽  
...  

2017 ◽  
Author(s):  
Yuen-Yi (Moony) Tseng ◽  
Andrew Hong ◽  
Shubhroz Gill ◽  
Paula Keskula ◽  
Srivatsan Raghavan ◽  
...  

2017 ◽  
Vol 28 (23) ◽  
pp. 3415-3427 ◽  
Author(s):  
Farzan Ghanegolmohammadi ◽  
Mitsunori Yoshida ◽  
Shinsuke Ohnuki ◽  
Yuko Sukegawa ◽  
Hiroki Okada ◽  
...  

We investigated the global landscape of Ca2+homeostasis in budding yeast based on high-dimensional chemical-genetic interaction profiles. The morphological responses of 62 Ca2+-sensitive (cls) mutants were quantitatively analyzed with the image processing program CalMorph after exposure to a high concentration of Ca2+. After a generalized linear model was applied, an analysis of covariance model was used to detect significant Ca2+–cls interactions. We found that high-dimensional, morphological Ca2+–cls interactions were mixed with positive (86%) and negative (14%) chemical-genetic interactions, whereas one-dimensional fitness Ca2+–cls interactions were all negative in principle. Clustering analysis with the interaction profiles revealed nine distinct gene groups, six of which were functionally associated. In addition, characterization of Ca2+–cls interactions revealed that morphology-based negative interactions are unique signatures of sensitized cellular processes and pathways. Principal component analysis was used to discriminate between suppression and enhancement of the Ca2+-sensitive phenotypes triggered by inactivation of calcineurin, a Ca2+-dependent phosphatase. Finally, similarity of the interaction profiles was used to reveal a connected network among the Ca2+homeostasis units acting in different cellular compartments. Our analyses of high-dimensional chemical-genetic interaction profiles provide novel insights into the intracellular network of yeast Ca2+homeostasis.


2011 ◽  
Vol 18 (11) ◽  
pp. 1379-1389 ◽  
Author(s):  
Sang Ho Lee ◽  
Lisa Wang Jarantow ◽  
Hao Wang ◽  
Susan Sillaots ◽  
Henry Cheng ◽  
...  

2017 ◽  
Author(s):  
Raamesh Deshpande ◽  
Justin Nelson ◽  
Scott W. Simpkins ◽  
Michael Costanzo ◽  
Jeff S. Piotrowski ◽  
...  

Large-scale genetic interaction screening is a powerful approach for unbiased characterization of gene function and understanding systems-level cellular organization. While genome-wide screens are desirable as they provide the most comprehensive interaction profiles, they are resource and time-intensive and sometimes infeasible, depending on the species and experimental platform. For these scenarios, optimal methods for more efficient screening while still producing the maximal amount of information from the resulting profiles are of interest.To address this problem, we developed an optimal algorithm, called COMPRESS-GI, which selects a small but informative set of genes that captures most of the functional information contained within genome-wide genetic interaction profiles. The utility of this algorithm is demonstrated through an application of the approach to define a diagnostic mutant set for large-scale chemical genetic screens, where more than 13,000 compound screens were achieved through the increased throughput enabled by the approach. COMPRESS-GI can be broadly applied for directing genetic interaction screens in other contexts, including in species with little or no prior genetic-interaction data.


2020 ◽  
Vol 10 (12) ◽  
pp. 4335-4345
Author(s):  
Matthew D. Berg ◽  
Yanrui Zhu ◽  
Joshua Isaacson ◽  
Julie Genereaux ◽  
Raphaël Loll-Krippleber ◽  
...  

Non-proteinogenic amino acids, such as the proline analog L-azetidine-2-carboxylic acid (AZC), are detrimental to cells because they are mis-incorporated into proteins and lead to proteotoxic stress. Our goal was to identify genes that show chemical-genetic interactions with AZC in Saccharomyces cerevisiae and thus also potentially define the pathways cells use to cope with amino acid mis-incorporation. Screening the yeast deletion and temperature sensitive collections, we found 72 alleles with negative chemical-genetic interactions with AZC treatment and 12 alleles that suppress AZC toxicity. Many of the genes with negative chemical-genetic interactions are involved in protein quality control pathways through the proteasome. Genes involved in actin cytoskeleton organization and endocytosis also had negative chemical-genetic interactions with AZC. Related to this, the number of actin patches per cell increases upon AZC treatment. Many of the same cellular processes were identified to have interactions with proteotoxic stress caused by two other amino acid analogs, canavanine and thialysine, or a mistranslating tRNA variant that mis-incorporates serine at proline codons. Alleles that suppressed AZC-induced toxicity functioned through the amino acid sensing TOR pathway or controlled amino acid permeases required for AZC uptake. Further suggesting the potential of genetic changes to influence the cellular response to proteotoxic stress, overexpressing many of the genes that had a negative chemical-genetic interaction with AZC suppressed AZC toxicity.


2009 ◽  
Vol 9 (1) ◽  
pp. 116-126 ◽  
Author(s):  
Lisha Zhang ◽  
Min Huang ◽  
Edina Harsay

ABSTRACT Membrane and protein traffic to the cell surface is mediated by partially redundant pathways that are difficult to perturb in ways that yield a strong phenotype. Such robustness is expected in a fine-tuned process, regulated by environmental cues, that is required for controlled cell surface growth and cell proliferation. Synthetic genetic interaction screens are especially valuable for investigating complex processes involving partially redundant pathways or mechanisms. In a previous study, we used a triple-synthetic-lethal yeast mutant screen to identify a novel component of the late exocytic transport machinery, Avl9. In a chemical-genetic version of the successful mutant screen, we have now identified small molecules that cause a rapid (within 15 min) accumulation of secretory cargo and abnormal Golgi compartment-like membranes at low concentration (<2 μM), indicating that the compounds likely target the exocytic transport machinery at the Golgi. We screened for genes that, when overexpressed, suppress the drug effects, and found that the Ras-like small GTPase, Gtr2, but not its homolog and binding partner, Gtr1, efficiently suppresses the toxic effects of the compounds. Furthermore, assays for suppression of the secretory defect caused by the compounds suggest that Gtr proteins can regulate a pathway that is perturbed by the compounds. Because avl9Δ and gtr mutants share some phenotypes, our results indicate that the small molecules identified by our chemical-genetic strategy are promising tools for understanding Avl9 function and the mechanisms that control late exocytic transport.


Sign in / Sign up

Export Citation Format

Share Document