scholarly journals ATG8 Is Essential Specifically for an Autophagy-Independent Function in Apicoplast Biogenesis in Blood-Stage Malaria Parasites

mBio ◽  
2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Marta Walczak ◽  
Suresh M. Ganesan ◽  
Jacquin C. Niles ◽  
Ellen Yeh

ABSTRACT Plasmodium parasites and related pathogens contain an essential nonphotosynthetic plastid organelle, the apicoplast, derived from secondary endosymbiosis. Intriguingly, a highly conserved eukaryotic protein, autophagy-related protein 8 (ATG8), has an autophagy-independent function in the apicoplast. Little is known about the novel apicoplast function of ATG8 and its importance in blood-stage Plasmodium falciparum. Using a P. falciparum strain in which ATG8 expression was conditionally regulated, we showed that P. falciparum ATG8 (PfATG8) is essential for parasite replication. Significantly, growth inhibition caused by the loss of PfATG8 was reversed by addition of isopentenyl pyrophosphate (IPP), which was previously shown to rescue apicoplast defects in P. falciparum. Parasites deficient in PfATG8, but whose growth was rescued by IPP, had lost their apicoplast. We designed a suite of functional assays, including a new fluorescence in situ hybridization (FISH) method for detection of the low-copy-number apicoplast genome, to interrogate specific steps in apicoplast biogenesis and detect apicoplast defects which preceded the block in parasite replication. Though protein import and membrane expansion of the apicoplast were unaffected, the apicoplast was not inherited by daughter parasites. Our findings demonstrate that, though multiple autophagy-dependent and independent functions have been proposed for PfATG8, only its role in apicoplast biogenesis is essential in blood-stage parasites. We propose that PfATG8 is required for fission or segregation of the apicoplast during parasite replication. IMPORTANCE Plasmodium parasites, which cause malaria, and related apicomplexan parasites are important human and veterinary pathogens. They are evolutionarily distant from traditional model organisms and possess a unique plastid organelle, the apicoplast, acquired by an unusual eukaryote-eukaryote endosymbiosis which established novel protein/lipid import and organelle inheritance pathways in the parasite cell. Though the apicoplast is essential for parasite survival in all stages of its life cycle, little is known about these novel biogenesis pathways. We show that malaria parasites have adapted a highly conserved protein required for macroautophagy in yeast and mammals to function specifically in apicoplast inheritance. Our finding elucidates a novel mechanism of organelle biogenesis, essential for pathogenesis, in this divergent branch of pathogenic eukaryotes.

2017 ◽  
Author(s):  
Marta Walczak ◽  
Suresh M. Ganesan ◽  
Jacquin C. Niles ◽  
Ellen Yeh

AbstractPlasmodium parasites and related pathogens contain an essential non-photosynthetic plastid organelle, the apicoplast, derived from secondary endosymbiosis. Intriguingly, a highly conserved eukaryotic protein, autophagy-related protein 8 (Atg8), has an autophagy-independent function in the apicoplast. Little is known about the novel apicoplast function of Atg8 and its importance in blood-stage P. falciparum. Using a P. falciparum strain in which Atg8 expression was conditionally regulated, we showed that PfAtg8 is essential for parasite replication. Significantly, growth inhibition caused by the loss of PfAtg8 was reversed by addition of isopentenyl pyrophosphate (IPP), which was previously shown to rescue apicoplast defects in P. falciparum. Parasites deficient in PfAtg8, but growth rescued by IPP, had lost their apicoplast. We designed a suite of functional assays, including a new fluorescence in situ hybridization (FISH) method for detection of the low-copy apicoplast genome, to interrogate specific steps in apicoplast biogenesis and detect apicoplast defects which preceded the block in parasite replication. Though protein import and membrane expansion of the apicoplast were unaffected, the apicoplast was not inherited by daughter parasites. Our findings demonstrate that, though multiple autophagy-dependent and independent functions have been proposed for PfAtg8, only its role in apicoplast biogenesis is essential. We propose that PfAtg8 is required for fission or segregation of the apicoplast during parasite replication.


2018 ◽  
Author(s):  
Michael J. Boucher ◽  
Sreejoyee Ghosh ◽  
Lichao Zhang ◽  
Avantika Lal ◽  
Se Won Jang ◽  
...  

AbstractMalaria parasites (Plasmodium spp.) and related apicomplexan pathogens contain a non-photosynthetic plastid called the apicoplast. Derived from an unusual secondary eukaryote-eukaryote endosymbiosis, the apicoplast is a fascinating organelle whose function and biogenesis rely on a complex amalgamation of bacterial and algal pathways. Because these pathways are distinct from the human host, the apicoplast is an excellent source of novel antimalarial targets. Despite its biomedical importance and evolutionary significance, the absence of a reliable apicoplast proteome has limited most studies to the handful of pathways identified by homology to bacteria or primary chloroplasts, precluding our ability to study the most novel apicoplast pathways. Here we combine proximity biotinylation-based proteomics (BioID) and a new machine learning algorithm to generate a high-confidence apicoplast proteome consisting of 346 proteins. Critically, the high accuracy of this proteome significantly outperforms previous prediction-based methods and extends beyond other BioID studies of unique parasite compartments. Half of identified proteins have unknown function, and 77% are predicted to be important for normal blood-stage growth. We validate the apicoplast localization of a subset of novel proteins and show that an ATP-binding cassette protein ABCF1 is essential for blood-stage survival and plays a previously unknown role in apicoplast biogenesis. These findings indicate critical organellar functions for newly discovered apicoplast proteins. The apicoplast proteome will be an important resource for elucidating unique pathways derived from secondary endosymbiosis and prioritizing antimalarial drug targets.


Genes ◽  
2018 ◽  
Vol 9 (8) ◽  
pp. 412 ◽  
Author(s):  
Natalia Mallo ◽  
Justin Fellows ◽  
Carla Johnson ◽  
Lilach Sheiner

: The organelles of endosymbiotic origin, plastids, and mitochondria, evolved through the serial acquisition of endosymbionts by a host cell. These events were accompanied by gene transfer from the symbionts to the host, resulting in most of the organellar proteins being encoded in the cell nuclear genome and trafficked into the organelle via a series of translocation complexes. Much of what is known about organelle protein translocation mechanisms is based on studies performed in common model organisms; e.g., yeast and humans or Arabidopsis. However, studies performed in divergent organisms are gradually accumulating. These studies provide insights into universally conserved traits, while discovering traits that are specific to organisms or clades. Apicomplexan parasites feature two organelles of endosymbiotic origin: a secondary plastid named the apicoplast and a mitochondrion. In the context of the diseases caused by apicomplexan parasites, the essential roles and divergent features of both organelles make them prime targets for drug discovery. This potential and the amenability of the apicomplexan Toxoplasma gondii to genetic manipulation motivated research about the mechanisms controlling both organelles’ biogenesis. Here we provide an overview of what is known about apicomplexan organelle protein import. We focus on work done mainly in T. gondii and provide a comparison to model organisms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Malabika Chakrabarti ◽  
Nishant Joshi ◽  
Geeta Kumari ◽  
Preeti Singh ◽  
Rumaisha Shoaib ◽  
...  

AbstractCytoskeletal structures of Apicomplexan parasites are important for parasite replication, motility, invasion to the host cell and survival. Apicortin, an Apicomplexan specific protein appears to be a crucial factor in maintaining stability of the parasite cytoskeletal assemblies. However, the function of apicortin, in terms of interaction with microtubules still remains elusive. Herein, we have attempted to elucidate the function of Plasmodium falciparum apicortin by monitoring its interaction with two main components of parasite microtubular structure, α-tubulin-I and β-tubulin through in silico and in vitro studies. Further, a p25 domain binding generic drug Tamoxifen (TMX), was used to disrupt PfApicortin-tubulin interactions which led to the inhibition in growth and progression of blood stage life cycle of P. falciparum.


mBio ◽  
2015 ◽  
Vol 6 (6) ◽  
Author(s):  
Maude F. Lévêque ◽  
Laurence Berry ◽  
Michael J. Cipriano ◽  
Hoa-Mai Nguyen ◽  
Boris Striepen ◽  
...  

ABSTRACT Autophagy is a catabolic process widely conserved among eukaryotes that permits the rapid degradation of unwanted proteins and organelles through the lysosomal pathway. This mechanism involves the formation of a double-membrane structure called the autophagosome that sequesters cellular components to be degraded. To orchestrate this process, yeasts and animals rely on a conserved set of autophagy-related proteins (ATGs). Key among these factors is ATG8, a cytoplasmic protein that is recruited to nascent autophagosomal membranes upon the induction of autophagy. Toxoplasma gondii is a potentially harmful human pathogen in which only a subset of ATGs appears to be present. Although this eukaryotic parasite seems able to generate autophagosomes upon stresses such as nutrient starvation, the full functionality and biological relevance of a canonical autophagy pathway are as yet unclear. Intriguingly, in T. gondii, ATG8 localizes to the apicoplast under normal intracellular growth conditions. The apicoplast is a nonphotosynthetic plastid enclosed by four membranes resulting from a secondary endosymbiosis. Using superresolution microscopy and biochemical techniques, we show that TgATG8 localizes to the outermost membrane of this organelle. We investigated the unusual function of TgATG8 at the apicoplast by generating a conditional knockdown mutant. Depletion of TgATG8 led to rapid loss of the organelle and subsequent intracellular replication defects, indicating that the protein is essential for maintaining apicoplast homeostasis and thus for survival of the tachyzoite stage. More precisely, loss of TgATG8 led to abnormal segregation of the apicoplast into the progeny because of a loss of physical interactions of the organelle with the centrosomes. IMPORTANCE By definition, autophagy is a catabolic process that leads to the digestion and recycling of eukaryotic cellular components. The molecular machinery of autophagy was identified mainly in model organisms such as yeasts but remains poorly characterized in phylogenetically distant apicomplexan parasites. We have uncovered an unusual function for autophagy-related protein ATG8 in Toxoplasma gondii: TgATG8 is crucial for normal replication of the parasite inside its host cell. Seemingly unrelated to the catabolic autophagy process, TgATG8 associates with the outer membrane of the nonphotosynthetic plastid harbored by the parasite called the apicoplast, and there it plays an important role in the centrosome-driven inheritance of the organelle during cell division. This not only reveals an unexpected function for an autophagy-related protein but also sheds new light on the division process of an organelle that is vital to a group of important human and animal pathogens.


1983 ◽  
Vol 39 (1) ◽  
pp. 456-459 ◽  
Author(s):  
Hazel M. Dockrell ◽  
John H. L. Playfair

PLoS Biology ◽  
2021 ◽  
Vol 19 (3) ◽  
pp. e3001020
Author(s):  
Eloïse Bertiaux ◽  
Aurélia C. Balestra ◽  
Lorène Bournonville ◽  
Vincent Louvel ◽  
Bohumil Maco ◽  
...  

Malaria is caused by unicellular Plasmodium parasites. Plasmodium relies on diverse microtubule cytoskeletal structures for its reproduction, multiplication, and dissemination. Due to the small size of this parasite, its cytoskeleton has been primarily observable by electron microscopy (EM). Here, we demonstrate that the nanoscale cytoskeleton organisation is within reach using ultrastructure expansion microscopy (U-ExM). In developing microgametocytes, U-ExM allows monitoring the dynamic assembly of axonemes and concomitant tubulin polyglutamylation in whole cells. In the invasive merozoite and ookinete forms, U-ExM unveils the diversity across Plasmodium stages and species of the subpellicular microtubule arrays that confer cell rigidity. In ookinetes, we additionally identify an apical tubulin ring (ATR) that colocalises with markers of the conoid in related apicomplexan parasites. This tubulin-containing structure was presumed to be lost in Plasmodium despite its crucial role in motility and invasion in other apicomplexans. Here, U-ExM reveals that a divergent and considerably reduced form of the conoid is actually conserved in Plasmodium species.


2020 ◽  
Vol 133 (16) ◽  
pp. jcs246983 ◽  
Author(s):  
Fei Wu ◽  
Rinse de Boer ◽  
Arjen M. Krikken ◽  
Arman Akşit ◽  
Nicola Bordin ◽  
...  

ABSTRACTThe yeast Hansenula polymorpha contains four members of the Pex23 family of peroxins, which characteristically contain a DysF domain. Here we show that all four H. polymorpha Pex23 family proteins localize to the endoplasmic reticulum (ER). Pex24 and Pex32, but not Pex23 and Pex29, predominantly accumulate at peroxisome–ER contacts. Upon deletion of PEX24 or PEX32 – and to a much lesser extent, of PEX23 or PEX29 – peroxisome–ER contacts are lost, concomitant with defects in peroxisomal matrix protein import, membrane growth, and organelle proliferation, positioning and segregation. These defects are suppressed by the introduction of an artificial peroxisome–ER tether, indicating that Pex24 and Pex32 contribute to tethering of peroxisomes to the ER. Accumulation of Pex32 at these contact sites is lost in cells lacking the peroxisomal membrane protein Pex11, in conjunction with disruption of the contacts. This indicates that Pex11 contributes to Pex32-dependent peroxisome–ER contact formation. The absence of Pex32 has no major effect on pre-peroxisomal vesicles that occur in pex3 atg1 deletion cells.


Sign in / Sign up

Export Citation Format

Share Document