scholarly journals RNA-seq 2G: online analysis of differential gene expression with comprehensive options of statistical methods

2017 ◽  
Author(s):  
Zhe Zhang ◽  
Yuanchao Zhang ◽  
Perry Evans ◽  
Asif Chinwalla ◽  
Deanne Taylor

ABSTRACTRNA-seq has become the most prevalent technology for measuring genome-wide gene expression, but the best practices for processing and analysing RNA-seq data are still an open question. Many statistical methods have been developed to identify genes differentially expressed between sample groups from RNA-seq data. These methods differ by their data distribution assumptions, choice of statistical test, and computational resource requirements. Over 25 methods of differential expression detection were validated and made available through a user-friendly web portal, RNA-seq 2G. All methods are suitable for analysing differential gene expression between two groups of samples. They commonly use a read count matrix derived from RNA-seq data as input and statistically compare groups for each gene. The web portal uses a Shiny app front-end and is hosted by a cloud-based server provided by Amazon Web Service. The comparison of methods showed that the data distribution assumption is the major determinant of differences between methods. Most methods are more likely to find that longer genes are differentially expressed, which substantially impacts downstream gene set-level analysis. Combining results from multiple methods can potentially diminish this bias. RNA-seq 2G makes the analysis of RNA-seq data more accessible and efficient, and is freely available at http://rnaseq2g.awsomics.org.

2018 ◽  
Author(s):  
Adam McDermaid ◽  
Brandon Monier ◽  
Jing Zhao ◽  
Qin Ma

AbstractDifferential gene expression (DGE) is one of the most common applications of RNA-sequencing (RNA-seq) data. This process allows for the elucidation of differentially expressed genes (DEGs) across two or more conditions. Interpretation of the DGE results can be non-intuitive and time consuming due to the variety of formats based on the tool of choice and the numerous pieces of information provided in these results files. Here we present an R package, ViDGER (Visualization of Differential Gene Expression Results using R), which contains nine functions that generate information-rich visualizations for the interpretation of DGE results from three widely-used tools, Cuffdiff, DESeq2, and edgeR.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0249148
Author(s):  
Nick Kinney ◽  
Lin Kang ◽  
Harpal Bains ◽  
Elizabeth Lawson ◽  
Mesam Husain ◽  
...  

Approximately three percent of the human genome is occupied by microsatellites: a type of short tandem repeat (STR). Microsatellites have well established effects on (a) the genetic structure of diverse human populations and (b) expression of nearby genes. These lines of inquiry have uncovered 3,984 ethnically biased microsatellite loci (EBML) and 28,375 expression STRs (eSTRs), respectively. We hypothesize that a combination of EBML, eSTRs, and gene expression data (RNA-seq) can be used to show that microsatellites contribute to differential gene expression and phenotype in human populations. In fact, our previous study demonstrated a degree of mutual overlap between EBML and eSTRs but fell short of quantifying effects on gene expression. The present work aims to narrow the gap. First, we identify 313 overlapping EBML/eSTRs and recapitulate their mutual overlap. The 313 EBML/eSTRs are then characterized across ethnicity and tissue type. We use RNA-seq data to pursue validation of 49 regions that affect whole blood gene expression; 32 out of 54 affected genes are differentially expressed in Africans and Europeans. We quantify the relative contribution of these 32 genes to differential expression; fold change tends to be less than other differentially expressed genes. Repeat length correlates with expression for 15 of the 32 genes; two are conspicuously involved in glutathione metabolism. Finally, we repurpose a mathematical model of glutathione metabolism to investigate how a single polymorphic microsatellite affects phenotype. We conclude with a testable prediction that microsatellite polymorphisms affect GPX7 expression and oxidative stress in Africans and Europeans.


2019 ◽  
Vol 12 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Jun-Young Shin ◽  
Sang-Heon Choi ◽  
Da-Woon Choi ◽  
Ye-Jin An ◽  
Jae-Hyuk Seo ◽  
...  

2007 ◽  
Vol 32 (1) ◽  
pp. 154-159 ◽  
Author(s):  
Li Li ◽  
Amitabha Chaudhuri ◽  
John Chant ◽  
Zhijun Tang

We have devised a novel analysis approach, percentile analysis for differential gene expression (PADGE), for identifying genes differentially expressed between two groups of heterogeneous samples. PADGE was designed to compare expression profiles of sample subgroups at a series of percentile cutoffs and to examine the trend of relative expression between sample groups as expression level increases. Simulation studies showed that PADGE has more statistical power than t-statistics, cancer outlier profile analysis (COPA) (Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, Lee C, Montie JE, Shah RB, Pienta KJ, Rubin MA, Chinnaiyan AM. Science 310: 644–648, 2005), and kurtosis (Teschendorff AE, Naderi A, Barbosa-Morais NL, Caldas C. Bioinformatics 22: 2269–2275, 2006). Application of PADGE to microarray data sets in tumor tissues demonstrated its utility in prioritizing cancer genes encoding potential therapeutic targets or diagnostic markers. A web application was developed for researchers to analyze a large gene expression data set from heterogeneous biological samples and identify differentially expressed genes between subsets of sample classes using PADGE and other available approaches. Availability: http://www.cgl.ucsf.edu/Research/genentech/padge/ .


Sign in / Sign up

Export Citation Format

Share Document