scholarly journals Size control in mammalian cells involves modulation of both growth rate and cell cycle duration

2017 ◽  
Author(s):  
Clotilde Cadart ◽  
Sylvain Monnier ◽  
Jacopo Grilli ◽  
Rafaele Attia ◽  
Emmanuel Terriac ◽  
...  

SummaryDespite decades of research, it remains unclear how mammalian cell growth varies with cell size and across the cell division cycle to maintain size control. Answers have been limited by the difficulty of directly measuring growth at the single cell level. Here we report direct measurement of single cell volumes over complete cell division cycles. The volume added across the cell cycle was independent of cell birth size, a size homeostasis behavior called “adder”. Single-cell growth curves revealed that the homeostatic behavior relied on adaptation of G1 duration as well as growth rate modulations. We developed a general mathematical framework that characterizes size homeostasis behaviors. Applying it on datasets ranging from bacteria to mammalian cells revealed that a near-adder is the most common type of size control, but only mammalian cells achieve it using modulation of both cell growth rate and cell-cycle progression.

2020 ◽  
Vol 117 (44) ◽  
pp. 27388-27399
Author(s):  
Xili Liu ◽  
Seungeun Oh ◽  
Leonid Peshkin ◽  
Marc W. Kirschner

The fine balance of growth and division is a fundamental property of the physiology of cells, and one of the least understood. Its study has been thwarted by difficulties in the accurate measurement of cell size and the even greater challenges of measuring growth of a single cell over time. We address these limitations by demonstrating a computationally enhanced methodology for quantitative phase microscopy for adherent cells, using improved image processing algorithms and automated cell-tracking software. Accuracy has been improved more than twofold and this improvement is sufficient to establish the dynamics of cell growth and adherence to simple growth laws. It is also sufficient to reveal unknown features of cell growth, previously unmeasurable. With these methodological and analytical improvements, in several cell lines we document a remarkable oscillation in growth rate, occurring throughout the cell cycle, coupled to cell division or birth yet independent of cell cycle progression. We expect that further exploration with this advanced tool will provide a better understanding of growth rate regulation in mammalian cells.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Clotilde Cadart ◽  
Sylvain Monnier ◽  
Jacopo Grilli ◽  
Pablo J. Sáez ◽  
Nishit Srivastava ◽  
...  

2019 ◽  
Author(s):  
Xili Liu ◽  
Seungeun Oh ◽  
Leonid Peshkin ◽  
Marc W. Kirschner

AbstractThe fine balance of growth and division is a fundamental property of the physiology of cells and one of the least understood. Its study has been thwarted by difficulties in the accurate measurement of cell size and the even greater challenges of measuring growth of a single-cell over time. We address these limitations by demonstrating a new computationally enhanced methodology for Quantitative Phase Microscopy (ceQPM) for adherent cells, using improved image processing algorithms and automated cell tracking software. Accuracy has been improved more than two-fold and this improvement is sufficient to establish the dynamics of cell growth and adherence to simple growth laws. It is also sufficient to reveal unknown features of cell growth previously unmeasurable. With these methodological and analytical improvements, we document a remarkable oscillation in growth rate in several different cell lines, occurring throughout the cell cycle, coupled to cell division or birth, and yet independent of cell cycle progression. We expect that further exploration with this improved tool will provide a better understanding of growth rate regulation in mammalian cells.Significance StatementIt has been a long-standing question in cell growth studies that whether the mass of individual cell grows linearly or exponentially. The two models imply fundamentally distinct mechanisms, and the discrimination of the two requires great measurement accuracy. Here, we develop a new method of computationally enhanced Quantitative Phase Microscopy (ceQPM), which greatly improves the accuracy and throughput of single-cell growth measurement in adherent mammalian cells. The measurements of several cell lines indicate that the growth dynamics of individual cells cannot be explained by either of the simple models but rather present an unanticipated and remarkable oscillatory behavior, suggesting more complex regulation and feedbacks.


2018 ◽  
Author(s):  
Clotilde Cadart ◽  
Sylvain Monnier ◽  
Jacopo Grilli ◽  
Rafaele Attia ◽  
Emmanuel Terriac ◽  
...  

2018 ◽  
Author(s):  
Evgeny Zatulovskiy ◽  
Daniel F. Berenson ◽  
Benjamin R. Topacio ◽  
Jan M. Skotheim

Cell size is fundamental to function in different cell types across the human body because it sets the scale of organelle structures, biosynthesis, and surface transport1,2. Tiny erythrocytes squeeze through capillaries to transport oxygen, while the million-fold larger oocyte divides without growth to form the ~100 cell pre-implantation embryo. Despite the vast size range across cell types, cells of a given type are typically uniform in size likely because cells are able to accurately couple cell growth to division3–6. While some genes whose disruption in mammalian cells affects cell size have been identified, the molecular mechanisms through which cell growth drives cell division have remained elusive7–12. Here, we show that cell growth acts to dilute the cell cycle inhibitor Rb to drive cell cycle progression from G1 to S phase in human cells. In contrast, other G1/S regulators remained at nearly constant concentration. Rb is a stable protein that is synthesized during S and G2 phases in an amount that is independent of cell size. Equal partitioning to daughter cells of chromatin bound Rb then ensures that all cells at birth inherit a similar amount of Rb protein. RB overexpression increased cell size in tissue culture and a mouse cancer model, while RB deletion decreased cell size and removed the inverse correlation between cell size at birth and the duration of G1 phase. Thus, Rb-dilution by cell growth in G1 provides a long-sought cell autonomous molecular mechanism for cell size homeostasis.


2021 ◽  
Author(s):  
Alan D Stern ◽  
Gregory R Smith ◽  
Luis C Santos ◽  
Deepraj Sarmah ◽  
Xiang Zhang ◽  
...  

Predictive determinants of stochastic single-cell fates have been elusive, even for the well-studied mammalian cell cycle. What drives proliferation decisions of single cells at any given time? We monitored single-cell dynamics of the ERK and Akt pathways, critical cell cycle progression hubs and anti-cancer drug targets, and paired them to division events in the same single cells using the non-transformed MCF10A epithelial line. Following growth factor treatment, in cells that divide both ERK and Akt activities are significantly higher within the S-G2 time window (~8.5-40 hours). Such differences were much smaller in the pre-S-phase, restriction point window which is traditionally associated with ERK and Akt activity dependence, suggesting unappreciated roles for ERK and Akt in S through G2. Machine learning algorithms show that simple metrics of central tendency in this time window are most predictive for subsequent cell division; median ERK and Akt activities classify individual division events with an AUC=0.76. Surprisingly, ERK dynamics alone predict division in individual cells with an AUC=0.74, suggesting Akt activity dynamics contribute little to the decision driving cell division in this context. We also find that ERK and Akt activities are less correlated with each other in cells that divide. Network reconstruction experiments demonstrated that this correlation behavior was likely not due to crosstalk, as ERK and Akt do not interact in this context, in contrast to other transformed cell types. Overall, our findings support roles for ERK and Akt activity throughout the cell cycle as opposed to just before the restriction point, and suggest ERK activity dynamics are substantially more important than Akt activity dynamics for driving cell division in this non-transformed context. Single cell imaging along with machine learning algorithms provide a better basis to understand cell cycle progression on the single cell level.


2004 ◽  
Vol 24 (24) ◽  
pp. 10802-10813 ◽  
Author(s):  
Brandt L. Schneider ◽  
Jian Zhang ◽  
J. Markwardt ◽  
George Tokiwa ◽  
Tom Volpe ◽  
...  

ABSTRACT In Saccharomyces cerevisiae, commitment to cell cycle progression occurs at Start. Progression past Start requires cell growth and protein synthesis, a minimum cell size, and G1-phase cyclins. We examined the relationships among these factors. Rapidly growing cells expressed, and required, dramatically more Cln protein than did slowly growing cells. To clarify the role of cell size, we expressed defined amounts of CLN mRNA in cells of different sizes. When Cln was expressed at nearly physiological levels, a critical threshold of Cln expression was required for cell cycle progression, and this critical threshold varied with both cell size and growth rate: as cells grew larger, they needed less CLN mRNA, but as cells grew faster, they needed more Cln protein. At least in part, large cells had a reduced requirement for CLN mRNA because large cells generated more Cln protein per unit of mRNA than did small cells. When Cln was overexpressed, it was capable of promoting Start rapidly, regardless of cell size or growth rate. In summary, the amount of Cln required for Start depends dramatically on both cell size and growth rate. Large cells generate more Cln1 or Cln2 protein for a given amount of CLN mRNA, suggesting the existence of a novel posttranscriptional size control mechanism.


2020 ◽  
Vol 127 (Suppl_1) ◽  
Author(s):  
Riham Abouleisa ◽  
Lindsey McNally ◽  
Qinghui Ou ◽  
Krishna Choudhary ◽  
Reuben Thomas ◽  
...  

Myocardial infarction causes irreversible loss of cardiomyocytes (CMs) and often leads to heart failure. To replace the lost cells, we identified a combination of cell-cycle regulators that induces stable cytokinesis in adult post-mitotic cells. Specifically, adenoviral overexpression of cyclin-dependent kinase 1 (CDK1), CDK4, cyclin B1, and cyclin D1 (collectively known as ‘four factors’, or simply 4F) induced cell division in ~15% of post-mitotic mouse, rat, and human CMs. Identifying the major roadblocks during the process of CM proliferation is a key for advancing this field. This was not possible before due to the lack of efficient methods to induce CM proliferation. The goal of the current study is to understand why a subpopulation of CMs divide while most CMs, despite expressing 4F, resist cell cycle reentry. To investigate transcriptional changes during cell cycle progression at the single cell level, we conducted temporal single cell RNAseq on 60-day-old matured hiPS-CMs infected with either LacZ (control) or 4F for 24, 48 and 72 h. We found a unique cell population that appears 48 h after infection with the 4F; this population was identified as the proliferating population and expressed high levels of cytokinesis genes (Ki67, Aurora Kinase A and B, E2F1, CDC20, ANLN, TK1, CCNA2, PLK1 and PCNA). Consistent with our published data, this population represents ~15% of the total CMs population expressing 4F. Compared with the quiescent population from the same sample, this unique population of proliferating CMs shows significant upregulation of the cell cycle program and major downregulation of mitochondrial electron transport chain genes. In line with these transcriptomic changes, hiPS-CMs had 50% lower rates of oxidative phosphorylation 48 h after 4F infection. Furthermore, in 4F-overexpressing iPS-CMs, stable isotope tracing demonstrated significantly higher enrichment of glucose-derived 13 C in NAD and UDP-HexNAc, suggesting activation of NAD synthesis and the hexosamine biosynthetic pathway. We conclude that proliferating CMs diminish catabolic pathway activity and augment biosynthetic pathway activity. The capacity of CM subpopulation to reprogram their metabolism is likely to facilitate their ability to complete cell division.


2019 ◽  
Author(s):  
Niclas Nordholt ◽  
Johan H. van Heerden ◽  
Frank J. Bruggeman

ABSTRACTThe growth rate of single bacterial cells is continuously disturbed by random fluctuations in biosynthesis rates and by deterministic cell-cycle events, such as division, genome duplication, and septum formation. It is not understood whether, and how, bacteria reject these disturbances. Here we quantified growth and constitutive protein expression dynamics of singleBacillus subtiliscells, as a function of cell-cycle-progression. Variation in birth size and growth rate, resulting from unequal cell division, is largely compensated for when cells divide again. We analysed the cell-cycle-dynamics of these compensations and found that both growth and protein expression exhibited biphasic behaviour. During a first phase of variable duration, the absolute rates were approximately constant and cells behaved as sizers. In the second phase, rates increased and growth behaviour exhibited characteristics of a timer-strategy. This work shows how cell-cycle-dependent rate adjustments of biosynthesis and growth are integrated to compensate for physio-logical disturbances caused by cell division.IMPORTANCEUnder constant conditions, bacterial populations can maintain a fixed average cell size and constant exponential growth rate. At the single cell-level, however, cell-division can cause significant physiological perturbations, requiring compensatory mechanisms to restore the growth-related characteristics of individual cells toward that of the average cell. Currently, there is still a major gap in our understanding of the dynamics of these mechanisms, i.e. how adjustments in growth, metabolism and biosynthesis are integrated during the bacterial cell-cycle to compensate the disturbances caused by cell division. Here we quantify growth and constitutive protein expression in individual bacterial cells at sub-cell-cycle resolution. Significantly, both growth and protein production rates display structured and coordinated cell-cycle-dependent dynamics. These patterns reveal the dynamics of growth rate and size compensations during cell-cycle progression. Our findings provide a dynamic cell-cycle perspective that offers novel avenues for the interpretation of physiological processes that underlie cellular homeostasis in bacteria.


Sign in / Sign up

Export Citation Format

Share Document