scholarly journals Mechanistic view and genetic control of DNA recombination during meiosis

2017 ◽  
Author(s):  
Marie-Claude Marsolier-Kergoat ◽  
Md Muntaz Khan ◽  
Jonathan Schott ◽  
Xuan Zhu ◽  
Bertrand Llorente

ABSTRACTMeiotic recombination is essential for fertility and allelic shuffling. Canonical recombination models fail to capture the observed complexity of meiotic recombinants. Here we revisit these models by analyzing meiotic heteroduplex DNA tracts genome-wide in combination with meiotic DNA double-strand break (DSB) locations. We provide unprecedented support to the synthesis-dependent strand annealing model and establish estimates of its associated template switching frequency and polymerase processivity. We show that resolution of double Holliday junctions (dHJs) is biased toward cleavage of the pair of strands containing newly synthesized DNA near the junctions. The suspected dHJ resolvase Mlh1-3 as well as Mlh1-2, Exo1 and Sgs1 promote asymmetric positioning of crossover intermediates relative to the initiating DSB and bidirectional conversions. Finally, we show that crossover-biased dHJ resolution depends on Mlh1-3, Exo1, Msh5 and to a lesser extent on Sgs1. These properties are likely conserved in eukaryotes containing the ZMM proteins, which includes mammals.

2005 ◽  
Vol 86 (3) ◽  
pp. 185-191 ◽  
Author(s):  
PETTER PORTIN

The effect was investigated of the hypomorphic DNA double-strand break repair, notably synthesis-dependent strand annealing, deficient mutation mus309 on the third chromosome of Drosophila melanogaster on intergenic and intragenic meiotic recombination in the X chromosome. The results showed that the mutation significantly increases the frequency of intergenic crossing over in two of three gene intervals of the X chromosome studied. Interestingly the increase was most prevalent in the tip of the X chromosome where crossovers normally are least frequent per physical map unit length. In particular crossing over interference was also affected, indicating that the effect of the mus309 mutation involves preconditions of crossing over but not the event of crossing over itself. On the other hand, the results also show that most probably the mutation does not have any effect on intragenic recombination, i.e. gene conversion. These results are fully consistent with the present molecular models of meiotic crossing over initiated by double-strand breaks of DNA followed by formation of a single-end-invasion intermediate, or D-loop, which is subsequently processed to generate either crossover or non-crossover products involving formation of a double Holliday junction. In particular the results suggest that the mus309 gene is involved in resolution of the D-loop, thereby affecting the choice between double-strand-break repair (DSBR) and synthesis-dependent strand annealing (SDSA) pathways of meiotic recombination.


2021 ◽  
Vol 118 (3) ◽  
pp. e2010370118
Author(s):  
Amira Elbakry ◽  
Szilvia Juhász ◽  
Ki Choi Chan ◽  
Markus Löbrich

Homologous recombination (HR) is an important DNA double-strand break (DSB) repair pathway that copies sequence information lost at the break site from an undamaged homologous template. This involves the formation of a recombination structure that is processed to restore the original sequence but also harbors the potential for crossover (CO) formation between the participating molecules. Synthesis-dependent strand annealing (SDSA) is an HR subpathway that prevents CO formation and is thought to predominate in mammalian cells. The chromatin remodeler ATRX promotes an alternative HR subpathway that has the potential to form COs. Here, we show that ATRX-dependent HR outcompetes RECQ5-dependent SDSA for the repair of most two-ended DSBs in human cells and leads to the frequent formation of COs, assessed by measuring sister chromatid exchanges (SCEs). We provide evidence that subpathway choice is dependent on interaction of both ATRX and RECQ5 with proliferating cell nuclear antigen. We also show that the subpathway usage varies among different cancer cell lines and compare it to untransformed cells. We further observe HR intermediates arising as ionizing radiation (IR)-induced ultra-fine bridges only in cells expressing ATRX and lacking MUS81 and GEN1. Consistently, damage-induced MUS81 recruitment is only observed in ATRX-expressing cells. Cells lacking BLM show similar MUS81 recruitment and IR-induced SCE formation as control cells. Collectively, these results suggest that the ATRX pathway involves the formation of HR intermediates whose processing is entirely dependent on MUS81 and GEN1 and independent of BLM. We propose that the predominant ATRX-dependent HR subpathway forms joint molecules distinct from classical Holliday junctions.


Author(s):  
James E. Haber ◽  
Gregorz Ira ◽  
Anna Malkova ◽  
Neal Sugawara

Since the pioneering model for homologous recombination proposed by Robin Holliday in 1964, there has been great progress in understanding how recombination occurs at a molecular level. In the budding yeast Saccharomyces cerevisiae , one can follow recombination by physically monitoring DNA after the synchronous induction of a double–strand break (DSB) in both wild–type and mutant cells. A particularly well–studied system has been the switching of yeast mating–type ( MAT ) genes, where a DSB can be induced synchronously by expression of the site–specific HO endonuclease. Similar studies can be performed in meiotic cells, where DSBs are created by the Spo11 nuclease. There appear to be at least two competing mechanisms of homologous recombination: a synthesis–dependent strand annealing pathway leading to noncrossovers and a two–end strand invasion mechanism leading to formation and resolution of Holliday junctions (HJs), leading to crossovers. The establishment of a modified replication fork during DSB repair links gene conversion to another important repair process, break–induced replication. Despite recent revelations, almost 40 years after Holliday's model was published, the essential ideas he proposed of strand invasion and heteroduplex DNA formation, the formation and resolution of HJs, and mismatch repair, remain the basis of our thinking.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Anna Biernacka ◽  
Yingjie Zhu ◽  
Magdalena Skrzypczak ◽  
Romain Forey ◽  
Benjamin Pardo ◽  
...  

AbstractMaintenance of genome stability is a key issue for cell fate that could be compromised by chromosome deletions and translocations caused by DNA double-strand breaks (DSBs). Thus development of precise and sensitive tools for DSBs labeling is of great importance for understanding mechanisms of DSB formation, their sensing and repair. Until now there has been no high resolution and specific DSB detection technique that would be applicable to any cells regardless of their size. Here, we present i-BLESS, a universal method for direct genome-wide DNA double-strand break labeling in cells immobilized in agarose beads. i-BLESS has three key advantages: it is the only unbiased method applicable to yeast, achieves a sensitivity of one break at a given position in 100,000 cells, and eliminates background noise while still allowing for fixation of samples. The method allows detection of ultra-rare breaks such as those forming spontaneously at G-quadruplexes.


2015 ◽  
Vol 197 (19) ◽  
pp. 3121-3132 ◽  
Author(s):  
Richa Gupta ◽  
Stewart Shuman ◽  
Michael S. Glickman

ABSTRACTMycobacteria encode three DNA double-strand break repair pathways: (i) RecA-dependent homologous recombination (HR), (ii) Ku-dependent nonhomologous end joining (NHEJ), and (iii) RecBCD-dependent single-strand annealing (SSA). Mycobacterial HR has two presynaptic pathway options that rely on the helicase-nuclease AdnAB and the strand annealing protein RecO, respectively. Ablation ofadnABorrecOindividually causes partial impairment of HR, but loss ofadnABandrecOin combination abolishes HR. RecO, which can accelerate annealing of single-stranded DNAin vitro, also participates in the SSA pathway. The functions of RecF and RecR, which, in other model bacteria, function in concert with RecO as mediators of RecA loading, have not been examined in mycobacteria. Here, we present a genetic analysis ofrecFandrecRin mycobacterial recombination. We find that RecF, like RecO, participates in the AdnAB-independent arm of the HR pathway and in SSA. In contrast, RecR is required for all HR in mycobacteria and for SSA. The essentiality of RecR as an agent of HR is yet another distinctive feature of mycobacterial DNA repair.IMPORTANCEThis study clarifies the molecular requirements for homologous recombination in mycobacteria. Specifically, we demonstrate that RecF and RecR play important roles in both the RecA-dependent homologous recombination and RecA-independent single-strand annealing pathways. Coupled with our previous findings (R. Gupta, M. Ryzhikov, O. Koroleva, M. Unciuleac, S. Shuman, S. Korolev, and M. S. Glickman, Nucleic Acids Res 41:2284–2295, 2013,http://dx.doi.org/10.1093/nar/gks1298), these results revise our view of mycobacterial recombination and place the RecFOR system in a central position in homology-dependent DNA repair.


Science ◽  
2017 ◽  
Vol 355 (6320) ◽  
pp. 40-45 ◽  
Author(s):  
Eleni P. Mimitou ◽  
Shintaro Yamada ◽  
Scott Keeney

DNA double-strand breaks that initiate meiotic recombination are exonucleolytically processed. This 5′→3′ resection is a central, conserved feature of recombination but remains poorly understood. To address this lack, we mapped resection endpoints genome-wide at high resolution inSaccharomyces cerevisiae. Full-length resection requires Exo1 exonuclease and the DSB-responsive kinase Tel1, but not Sgs1 helicase. Tel1 also promotes efficient and timely resection initiation. Resection endpoints display pronounced heterogeneity between genomic loci that reflects a tendency for nucleosomes to block Exo1, yet Exo1 also appears to digest chromatin with high processivity and at rates similar to naked DNA in vitro. This paradox points to nucleosome destabilization or eviction as a defining feature of the meiotic resection landscape.


2021 ◽  
Author(s):  
Ioannis A. Papaioannou ◽  
Fabien Dutreux ◽  
France A. Peltier ◽  
Hiromi Maekawa ◽  
Nicolas Delhomme ◽  
...  

AbstractMeiotic recombination is a ubiquitous function of sexual reproduction throughout eukaryotes. Here we report that recombination is extremely suppressed during meiosis in the yeast speciesSaccharomycodes ludwigii. DNA double-strand break formation, processing and repair are required for normal meiosis but do not lead to crossing over. Although the species has retained an intact meiotic gene repertoire, genetic and population analyses suggest the exceptionally rare occurrence of meiotic crossovers. We propose thatSd. ludwigiihas followed a unique evolutionary trajectory that possibly derives fitness benefits from the combination of frequent fertilization within the meiotic tetrad with the absence of meiotic recombination.


Sign in / Sign up

Export Citation Format

Share Document