saccharomycodes ludwigii
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 10)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Kristoffer Krogerus ◽  
Ronja Eerikainen ◽  
Heikki Aisala ◽  
Brian Gibson

A number of fungal isolates were recently obtained from a survey of the microbiota of multiple breweries and brewery products. Here, we sought to explore whether any of these brewery contaminants could be repurposed for beneficial use in beer fermentations, with particular focus on low-alcohol beer. 56 yeast strains were first screened for the utilization of different carbon sources, ability to ferment brewer's wort, and formation of desirable aroma compounds. A number of strains appeared maltose-negative and produced desirable aromas without obvious off-flavours. These were selected for further scaled-up wort fermentations. The selected strains efficiently reduced wort aldehydes during fermentation, thus eliminating undesirable wort-like off-flavours, and produced a diverse volatile aroma profile. Sensory analysis of the beer samples using projective mapping identified two strains, Trigonopsis cantarellii and Candida sojae, that produced beers similar to a commercial reference lager beer. 30 L-scale wort fermentations were performed with these two strains together with a commercial Saccharomycodes ludwigii reference strain. Both strains performed comparably to the commercial reference, and the T. cantarellii strain in particular, produced low amounts of off-flavours and a significantly higher amount of the desirable monoterpene alcohol trans-geraniol. The strain was also sensitive to common food preservatives and antifungal compounds, and unable to grow at 37 °C, suggesting it is relatively easily controllable in the brewery, and appears to have low risk of pathogenicity. This study shows how the natural brewery microbiota can be exploited as a source of non-conventional yeasts for low-alcohol beer production.


2021 ◽  
Author(s):  
Ioannis A. Papaioannou ◽  
Fabien Dutreux ◽  
France A. Peltier ◽  
Hiromi Maekawa ◽  
Nicolas Delhomme ◽  
...  

AbstractMeiotic recombination is a ubiquitous function of sexual reproduction throughout eukaryotes. Here we report that recombination is extremely suppressed during meiosis in the yeast speciesSaccharomycodes ludwigii. DNA double-strand break formation, processing and repair are required for normal meiosis but do not lead to crossing over. Although the species has retained an intact meiotic gene repertoire, genetic and population analyses suggest the exceptionally rare occurrence of meiotic crossovers. We propose thatSd. ludwigiihas followed a unique evolutionary trajectory that possibly derives fitness benefits from the combination of frequent fertilization within the meiotic tetrad with the absence of meiotic recombination.


2021 ◽  
Vol 114 (5) ◽  
pp. 553-559
Author(s):  
Man-Man Wang ◽  
Marizeth Groenewald ◽  
Feng Wu ◽  
Yun-Tong Guo ◽  
Qi-Ming Wang ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Maria J. Tavares ◽  
Ulrich Güldener ◽  
Ana Mendes-Ferreira ◽  
Nuno P. Mira

Abstract Background Saccharomycodes ludwigii belongs to the poorly characterized Saccharomycodeacea family and is known by its ability to spoil wines, a trait mostly attributable to its high tolerance to sulfur dioxide (SO2). To improve knowledge about Saccharomycodeacea our group determined whole-genome sequences of Hanseniaspora guilliermondii (UTAD222) and S. ludwigii (UTAD17), two members of this family. While in the case of H. guilliermondii the genomic information elucidated crucial aspects concerning the physiology of this species in the context of wine fermentation, the draft sequence obtained for S. ludwigii was distributed by more than 1000 contigs complicating extraction of biologically relevant information. In this work we describe the results obtained upon resequencing of S. ludwigii UTAD17 genome using PacBio as well as the insights gathered from the exploration of the annotation performed over the assembled genome. Results Resequencing of S. ludwigii UTAD17 genome with PacBio resulted in 20 contigs totaling 13 Mb of assembled DNA and corresponding to 95% of the DNA harbored by this strain. Annotation of the assembled UTAD17 genome predicts 4644 protein-encoding genes. Comparative analysis of the predicted S. ludwigii ORFeome with those encoded by other Saccharomycodeacea led to the identification of 213 proteins only found in this species. Among these were six enzymes required for catabolism of N-acetylglucosamine, four cell wall β-mannosyltransferases, several flocculins and three acetoin reductases. Different from its sister Hanseniaspora species, neoglucogenesis, glyoxylate cycle and thiamine biosynthetic pathways are functional in S. ludwigii. Four efflux pumps similar to the Ssu1 sulfite exporter, as well as robust orthologues for 65% of the S. cerevisiae SO2-tolerance genes, were identified in S. ludwigii genome. Conclusions This work provides the first genome-wide picture of a S. ludwigii strain representing a step forward for a better understanding of the physiology and genetics of this species and of the Saccharomycodeacea family. The release of this genomic sequence and of the information extracted from it can contribute to guide the design of better wine preservation strategies to counteract spoilage prompted by S. ludwigii. It will also accelerate the exploration of this species as a cell factory, specially in production of fermented beverages where the use of Non-Saccharomyces species (including spoilage species) is booming.


CYTOLOGIA ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. 307-312
Author(s):  
Isamu Miyakawa ◽  
Erika Matsuo ◽  
Ryotaro Yagi ◽  
Tomomi Inai ◽  
Yoji Morifuku

2020 ◽  
Vol 66 (5) ◽  
pp. 336-344
Author(s):  
Peter Vaštík ◽  
Daniela Šmogrovičová ◽  
Valentína Kafková ◽  
Pavol Sulo ◽  
Katarína Furdíková ◽  
...  

Non-Saccharomyces yeast strains Saccharomycodes ludwigii, Schizosaccharomyces pombe, Lachancea fermentati and Pichia angusta together with a hybrid yeast strain cross-bred between genetically modified Saccharomyces cerevisiae W303-1A G418R and Saccharomyces eubayanus as well as the parent yeasts of the hybrid were studied for potential use for non-alcoholic beer production. The hybrid yeast, its Saccharomyces cerevisiae W303-1A G418R parent and Saccharomycodes ludwigii were not able to metabolise maltose during Durham tube tests. Schizosaccharomyces pombe, Lachancea fermentati and Pichia angusta metabolised maltose, however, showed limited ethanol production. Parameters, volatile and non-volatile organic compounds of beers produced by the studied yeast were analysed and compared to a beer produced by bottom fermented brewer’s yeast Saccharomyces pastorianus.


2020 ◽  
Vol 12 (12) ◽  
pp. 2344-2354
Author(s):  
Duong T Nguyen ◽  
Baojun Wu ◽  
Shujie Xiao ◽  
Weilong Hao

Abstract Genome-wide nucleotide composition varies widely among species. Despite extensive research, the source of genome-wide nucleotide composition diversity remains elusive. Yeast mitochondrial genomes (mitogenomes) are highly A + T rich, and they provide a unique opportunity to study the evolution of AT-biased landscape. In this study, we sequenced ten complete mitogenomes of the Saccharomycodes ludwigii yeast with 8% G + C content, the lowest genome-wide %(G + C) in all published genomes to date. The S. ludwigii mitogenomes have high densities of short tandem repeats but severely underrepresented mononucleotide repeats. Comparative population genomics of these record-setting A + T-rich genomes shows dynamic indel mutations and strong mutation bias toward A/T. Indel mutations play a greater role in genomic variation among very closely related strains than nucleotide substitutions. Indels have resulted in presence–absence polymorphism of tRNAArg (ACG) among S. ludwigii mitogenomes. Interestingly, these mitogenomes have undergone recombination, a genetic process that can increase G + C content by GC-biased gene conversion. Finally, the expected equilibrium G + C content under mutation pressure alone is higher than observed G + C content, suggesting existence of mechanisms other than AT-biased mutation operating to increase A/T. Together, our findings shed new lights on mechanisms driving extremely AT-rich genomes.


2020 ◽  
Vol 312 ◽  
pp. 125968 ◽  
Author(s):  
Kinga Adamenko ◽  
Joanna Kawa-Rygielska ◽  
Alicja Z. Kucharska

2020 ◽  
Vol 8 (5) ◽  
pp. 658 ◽  
Author(s):  
Xiaolin Zhu ◽  
Yurena Navarro ◽  
Albert Mas ◽  
María-Jesús Torija ◽  
Gemma Beltran

The alcohol content in wine has increased due to external factors in recent decades. In recent reports, some non-Saccharomyces yeast species have been confirmed to reduce ethanol during the alcoholic fermentation process. Thus, an efficient screening of non-Saccharomyces yeasts with low ethanol yield is required due to the broad diversity of these yeasts. In this study, we proposed a rapid method for selecting strains with a low ethanol yield from forty-five non-Saccharomyces yeasts belonging to eighteen species. Single fermentations were carried out for this rapid selection. Then, sequential fermentations in synthetic and natural must were conducted with the selected strains to confirm their capacity to reduce ethanol compared with that of Saccharomyces cerevisiae. The results showed that ten non-Saccharomyces strains were able to reduce the ethanol content, namely, Hanseniaspora uvarum (2), Issatchenkia terricola (1), Metschnikowia pulcherrima (2), Lachancea thermotolerans (1), Saccharomycodes ludwigii (1), Torulaspora delbrueckii (2), and Zygosaccharomyces bailii (1). Compared with S. cerevisiae, the ethanol reduction of the selected strains ranged from 0.29 to 1.39% (v/v). Sequential inoculations of M. pulcherrima (Mp51 and Mp FA) and S. cerevisiae reduced the highest concentration of ethanol by 1.17 to 1.39% (v/v) in synthetic or natural must. Second, sequential fermentations with Z. bailii (Zb43) and T. delbrueckii (Td Pt) performed in natural must yielded ethanol reductions of 1.02 and 0.84% (v/v), respectively.


2019 ◽  
Vol 7 (11) ◽  
pp. 478 ◽  
Author(s):  
Esteves ◽  
Barbosa ◽  
Vasconcelos ◽  
Tavares ◽  
Mendes-Faia ◽  
...  

Non-Saccharomyces yeasts have received increased attention by researchers and winemakers, due to their particular contributions to the characteristics of wine. In this group, Saccharomycodes ludwigii is one of the less studied species. In the present study, a native S. ludwigii strain, UTAD17 isolated from the Douro wine region was characterized for relevant oenological traits. The genome of UTAD17 was recently sequenced. Its potential use in winemaking was further evaluated by conducting grape-juice fermentations, either in single or in mixed-cultures, with Saccharomyces cerevisiae, following two inoculation strategies (simultaneous and sequential). In a pure culture, S. ludwigii UTAD17 was able to ferment all sugars in a reasonable time without impairing the wine quality, producing low levels of acetic acid and ethyl acetate. The overall effects of S. ludwigii UTAD17 in a mixed-culture fermentation were highly dependent on the inoculation strategy which dictated the dominance of each yeast strain. Wines whose fermentation was governed by S. ludwigii UTAD17 presented low levels of secondary aroma compounds and were chemically distinct from those fermented by S. cerevisiae. Based on these results, a future use of this non-Saccharomyces yeast either in monoculture fermentations or as a co-starter culture with S. cerevisiae for the production of wines with greater expression of the grape varietal character and with flavor diversity could be foreseen.


Sign in / Sign up

Export Citation Format

Share Document