scholarly journals A major locus controls local adaptation and adaptive life history variation in a perennial plant

2017 ◽  
Author(s):  
Jing Wang ◽  
Jihua Ding ◽  
Biyue Tan ◽  
Kathryn M. Robinson ◽  
Ingrid H. Michelson ◽  
...  

AbstractBackgroundThe initiation of growth cessation and dormancy represent critical life-history tradeoffs between survival and growth, and have important fitness effects in perennial plants. Such adaptive life history traits often show strong local adaptation along environmental gradients but despite their importance, the genetic architecture of these traits remains poorly understood.ResultsWe integrate whole genome re-sequencing with environmental and phenotypic data from common garden experiments to investigate the genomic basis of local adaptation across a latitudinal gradient in European aspen (Populus tremula). We discover a single genomic region containing the PtFT2 gene that mediates local adaptation in the timing of bud set and that explains 65% of the observed genetic variation in bud set. This locus is the likely target of a recent selective sweep that originated right before or during colonization of northern Scandinavia following the last glaciation. Field and greenhouse experiments confirm that variation in PtFT2 gene expression affect the phenotypic variation in bud set that we observe in wild natural populations.ConclusionsOur results reveal a major effect locus that determine the timing of bud set and that have facilitated rapid adaptation to shorter growing seasons and colder climates in European aspen. The discovery of a single locus explaining a substantial fraction of the variation in a key life history trait is remarkable given that such traits are generally considered to be highly polygenic. These findings provide a dramatic illustration of how loci of large-effect for adaptive traits can arise and be maintained over large geographical scales in natural populations.


2018 ◽  
Author(s):  
Nicolas J. Betancourt ◽  
Subhash Rajpurohit ◽  
Esra Durmaz ◽  
Daniel K. Fabian ◽  
Martin Kapun ◽  
...  

AbstractThe insulin insulin-like growth factor signaling pathway has been hypothesized as a major determinant of life history profiles that vary adaptively in natural populations. In Drosophila melanogaster, multiple components of this pathway vary predictably with latitude; this includes foxo, a conserved gene that regulates insulin signaling and has pleiotropic effects on a variety of fitness-associated traits. We hypothesized that allelic variation at foxo underlies genetic variance for traits that vary with latitude and reflect local adaptation. To evaluate this, we generated recombinant outbred populations in which the focal foxo allele was homozygous and fixed for either the allele common at high latitude or low latitude and the genomic background was randomized across 20 inbred lines. After eight generations of recombination, experimental populations were phenotyped for a series of traits related to gene function. Our results demonstrate that natural allelic variation at foxo has major and predictable effects on body size and starvation tolerance, but not on development time. These patterns mirror those observed in natural populations collected across the latitudinal gradient in the eastern U.S.: clines were observed for starvation tolerance and body size, but development time exhibited no association with latitude. Furthermore, differences in size between foxo genotypes were equivalent to those observed between populations sampled from the latitudinal extremes, although contribution to the genetic variance for starvation tolerance was less pronounced. These results suggest that allelic variation at foxo is a major contributor to adaptive patterns of life history variation in natural populations of this genetic model.



2018 ◽  
Author(s):  
Jacob W. Malcom ◽  
Thomas E. Juenger ◽  
Mathew A. Leibold

ABSTRACTBackgroundIdentifying the molecular basis of heritable variation provides insight into the underlying mechanisms generating phenotypic variation and the evolutionary history of organismal traits. Life history trait variation is of central importance to ecological and evolutionary dynamics, and contemporary genomic tools permit studies of the basis of this variation in non-genetic model organisms. We used high density genotyping, RNA-Seq gene expression assays, and detailed phenotyping of fourteen ecologically important life history traits in a wild-caught panel of 32Daphnia pulexclones to explore the molecular basis of trait variation in a model ecological species.ResultsWe found extensive phenotypic and a range of heritable genetic variation (~0 < H2< 0.44) in the panel, and accordingly identify 75-261 genes—organized in 3-6 coexpression modules—associated with genetic variation in each trait. The trait-related coexpression modules possess well-supported promoter motifs, and in conjunction with marker variation at trans- loci, suggest a relatively small number of important expression regulators. We further identify a candidate genetic network with SNPs in eight known transcriptional regulators, and dozens of differentially expressed genes, associated with life history variation. The gene-trait associations include numerous un-annotated genes, but also support several a priori hypotheses, including an ecdysone-induced protein and several Gene Ontology pathways.ConclusionThe genetic and gene expression architecture ofDaphnialife history traits is complex, and our results provide numerous candidate loci, genes, and coexpression modules to be tested as the molecular mechanisms that underlieDaphniaeco-evolutionary dynamics.



2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Jing Wang ◽  
Jihua Ding ◽  
Biyue Tan ◽  
Kathryn M. Robinson ◽  
Ingrid H. Michelson ◽  
...  


2005 ◽  
Vol 288 (5) ◽  
pp. R1226-R1236 ◽  
Author(s):  
Mauricio Avigdor ◽  
Shannon D. Sullivan ◽  
Paul D. Heideman

Natural variation in neuroendocrine traits is poorly understood, despite the importance of variation in brain function and evolution. Most rodents in the temperate zones inhibit reproduction and other nonessential functions in short winter photoperiods, but some have little or no reproductive response. We tested whether genetic variability in reproductive seasonality is related to individual differences in the neuronal function of the gonadotropin-releasing hormone network, as assessed by the number and location of mature gonadotropin-releasing hormone-secreting neurons under inhibitory and excitatory photoperiods. The experiments used lines of Peromyscus leucopus previously developed by selection from a wild population. One line contained individuals reproductively inhibited by short photoperiod, and the other line contained individuals nonresponsive to short photoperiod. Expression of mature gonadotropin-releasing hormone (GnRH) immunoreactivity in the brain was detected using SMI-41 antibody in the single-labeled avidin-biotin-peroxidase-complex method. Nonresponsive mice had 50% more immunoreactive GnRH neurons than reproductively inhibited mice in both short- and long-day photoperiods. The greatest differences were in the anterior hypothalamus and preoptic areas. In contrast, we detected no significant within-lines differences in the number or location of immunoreactive GnRH neurons between photoperiod treatments. Our data indicate that high levels of genetic variation in a single wild population for a specific neuronal trait are related to phenotypic variation in a life history trait, i.e., winter reproduction. Variation in GnRH neuronal activity may underlie some of the natural reproductive and life history variation observed in wild populations of P. leucopus. Similar genetic variation in neuronal traits may be present in humans and other species.



2018 ◽  
Author(s):  
Tutku Aykanat ◽  
Mikhail Ozerov ◽  
Juha-Pekka Vähä ◽  
Panu Orell ◽  
Eero Niemelä ◽  
...  

AbstractGenetic correlations in life history traits may result in unpredictable evolutionary trajectories if not accounted for in life-history models. Iteroparity (the reproductive strategy of reproducing more than once) in Atlantic salmon (Salmo salar) is a fitness trait with substantial variation within and among populations. In the Teno River in northern Europe, iteroparous individuals constitute an important component of many populations and have experienced a sharp increase in abundance in the last 20 years, partly overlapping with a general decrease in age structure. The physiological basis of iteroparity bears similarities to that of age at first maturity, another life history trait with substantial fitness effects in salmon. Sea age at maturity in Atlantic salmon is controlled by a major locus around the vgll3 gene, and we used this opportunity demonstrate that the two traits are genetically correlated around this genome region. The odds ratio of survival until second reproduction was up to 2.4 (1.8-3.5 90% CI) times higher for fish with the early-maturing vgll3 genotype (EE) compared to fish with the late-maturing genotype (LL). The association had a dominance architecture, although the dominant allele was reversed in the late-maturing group compared to younger groups that stayed only one year at sea before maturation. Post hoc analysis indicated that iteroparous fish with the EE genotype had accelerated growth prior to first reproduction compared to first-time spawners, across all age groups, while this effect was not detected in fish with the LL genotype. These results broaden the functional link around the vgll3 genome region and help us understand constraints in the evolution of life history variation in salmon. Our results further highlight the need to account for genetic correlations between fitness traits when predicting demographic changes in changing environments.



2018 ◽  
Vol 285 (1881) ◽  
pp. 20180519 ◽  
Author(s):  
Claire Mérot ◽  
Emma L. Berdan ◽  
Charles Babin ◽  
Eric Normandeau ◽  
Maren Wellenreuther ◽  
...  

Large chromosomal rearrangements are thought to facilitate adaptation to heterogeneous environments by limiting genomic recombination. Indeed, inversions have been implicated in adaptation along environmental clines and in ecotype specialization. Here, we combine classical ecological studies and population genetics to investigate an inversion polymorphism previously documented in Europe among natural populations of the seaweed fly Coelopa frigida along a latitudinal cline in North America. We test if the inversion is present in North America and polymorphic, assess which environmental conditions modulate the inversion karyotype frequencies, and document the relationship between inversion karyotype and adult size. We sampled nearly 2000 flies from 20 populations along several environmental gradients to quantify associations of inversion frequencies to heterogeneous environmental variables. Genotyping and phenotyping showed a widespread and conserved inversion polymorphism between Europe and America. Variation in inversion frequency was significantly associated with environmental factors, with parallel patterns between continents, indicating that the inversion may play a role in local adaptation. The three karyotypes of the inversion are differently favoured across micro-habitats and represent life-history strategies likely to be maintained by the collective action of several mechanisms of balancing selection. Our study adds to the mounting evidence that inversions are facilitators of adaptation and enhance within-species diversity.





2018 ◽  
Vol 5 (2) ◽  
pp. 172218 ◽  
Author(s):  
Gabrielle L. Davidson ◽  
Michael S. Reichert ◽  
Jodie M. S. Crane ◽  
William O'Shea ◽  
John L. Quinn

Personality research suggests that individual differences in risk aversion may be explained by links with life-history variation. However, few empirical studies examine whether repeatable differences in risk avoidance behaviour covary with life-history traits among individuals in natural populations, or how these links vary depending on the context and the way risk aversion is measured. We measured two different risk avoidance behaviours (latency to enter the nest and inspection time) in wild great tits ( Parus major ) in two different contexts—response to a novel object and to a predator cue placed at the nest-box during incubation---and related these behaviours to female reproductive success and condition. Females responded equally strongly to both stimuli, and although both behaviours were repeatable, they did not correlate. Latency to enter was negatively related to body condition and the number of offspring fledged. By contrast, inspection time was directly explained by whether incubating females had been flushed from the nest before the trial began. Thus, our inferences on the relationship between risk aversion and fitness depend on how risk aversion was measured. Our results highlight the limitations of drawing conclusions about the relevance of single measures of a personality trait such as risk aversion.



2021 ◽  
Author(s):  
Carina Donne ◽  
Katelyn Larkin ◽  
Claire Adrian-Tucci ◽  
Abby Good ◽  
Carson Kephart ◽  
...  

Abstract Potamopyrgus antipodarum is a New Zealand freshwater snail that is invasive worldwide. While native P. antipodarum populations are characterized by frequent coexistence between obligately sexual and obligately asexual individuals, only the asexual snails are known to invade other ecosystems. Despite low genetic diversity and the absence of sex, invasive asexual P. antipodarum are highly successful. Here, we quantified variation in three key life-history traits across invasive P. antipodarum lineages and compared this variation to already documented variation in these same traits in asexual native lineages to provide a deeper understanding of why some lineages become invasive. In particular, we evaluated 1) if invasive lineages of P. antipodarum could be successful because they represent life-history variation from native ancestors that could facilitate invasion, and 2) if invasive populations with higher genetic variation would display relatively high phenotypic variation. We found that invasive snails displayed a non-representative sample of native diversity, with invasive snails growing more slowly and maturing more rapidly than their native counterparts. These results are consistent with expectations of a scenario where invasive lineages represent a subset of native variation that is beneficial in the setting of invasion. Nevertheless, there was no evidence for a relationship between genetic and phenotypic variation, indicating that increased genetic variation does not necessarily translate into greater phenotypic variation, and consistent with earlier studies suggesting an important role for phenotypic plasticity in the P. antipodarum invasion. Together, these results help illuminate the mechanisms driving the worldwide expansion of invasive populations of these snails.



2019 ◽  
Author(s):  
Kjartan Østbye ◽  
Marius Hagen Hassve ◽  
Ana-Maria Tamayo Peris ◽  
Mari Hagenlund ◽  
Thomas Vogler ◽  
...  

AbstractBackgroundThe origin of species is a central topic in biology aiming at understanding mechanisms, level and rate of diversification. Ecological speciation is an important driver in adaptive radiation during post-glacial intra-lacustrine niche diversification in fishes. The Arctic charr Salvelinus alpinus L. species complex in the Northern hemisphere freshwater systems display huge morphological and life history divergence in lakes with one or several morphs present, thus offering a unique opportunity to address ongoing speciation mechanisms.We studied Arctic charr in Lake Tinnsjøen by fishing in four nominal lake habitats (pelagial, littoral, shallow-moderate profundal, and deep-profundal habitats) down to 350 meters depth. Research topics addressed were; (1) to illuminate Holarctic phylogeography and lineages colonizing Lake Tinnsjøen, (2) to estimate reproductive isolation of morphs or fish using unbiased methods, and (3) to document eco-morphological and life history trait divergence. Also, we compared Lake Tinnsjøen with four Norwegian outgroup populations of Arctic charr.ResultsFour field-assigned morphs were identified in Lake Tinnsjøen; the planktivore morph in all habitats except deep-profundal, the dwarf morph in shallow-moderate profundal, the piscivore morph in shallow-moderate profundal (less in littoral and deep-profundal), and an undescribed new morph – the abyssal morph in the deep-profundal only. The morphs displayed extensive life history variation based on age and size patterns. A moderate to high concordance was observed between field-assigned morphs and four unbiased genetic clusters obtained from microsatellite variation. MtDNA suggested the occurrence of two minor endemic clades in Lake Tinnsjøen likely originating from one widespread colonizing clade in the Holarctic. All morphs were genetically differentiated at microsatellites (FST: 0.12-0.20; with some ongoing gene flow among morphs, and for most mtDNA comparisons (FST: 0.04-0.38). Analyses of Norwegian outgroup lakes implied colonization from a river system below Lake Tinnsjøen.ConclusionOur findings suggest post-glacial adaptive radiation of one colonizing mtDNA lineage with divergent niche specialization along a depth-temperature-productivity-pressure gradient. Concordance between reproductive isolation and the realized habitat of the morphs imply that ecological speciation may be the mechanism of divergence. Particularly novel is the extensive morph diversification with depth into the often unexplored deep-water profundal habitat, suggesting we may have systematically underestimated biodiversity present in lakes.



Sign in / Sign up

Export Citation Format

Share Document