scholarly journals Genetic correlation between sea age at maturity and iteroparity in Atlantic salmon

2018 ◽  
Author(s):  
Tutku Aykanat ◽  
Mikhail Ozerov ◽  
Juha-Pekka Vähä ◽  
Panu Orell ◽  
Eero Niemelä ◽  
...  

AbstractGenetic correlations in life history traits may result in unpredictable evolutionary trajectories if not accounted for in life-history models. Iteroparity (the reproductive strategy of reproducing more than once) in Atlantic salmon (Salmo salar) is a fitness trait with substantial variation within and among populations. In the Teno River in northern Europe, iteroparous individuals constitute an important component of many populations and have experienced a sharp increase in abundance in the last 20 years, partly overlapping with a general decrease in age structure. The physiological basis of iteroparity bears similarities to that of age at first maturity, another life history trait with substantial fitness effects in salmon. Sea age at maturity in Atlantic salmon is controlled by a major locus around the vgll3 gene, and we used this opportunity demonstrate that the two traits are genetically correlated around this genome region. The odds ratio of survival until second reproduction was up to 2.4 (1.8-3.5 90% CI) times higher for fish with the early-maturing vgll3 genotype (EE) compared to fish with the late-maturing genotype (LL). The association had a dominance architecture, although the dominant allele was reversed in the late-maturing group compared to younger groups that stayed only one year at sea before maturation. Post hoc analysis indicated that iteroparous fish with the EE genotype had accelerated growth prior to first reproduction compared to first-time spawners, across all age groups, while this effect was not detected in fish with the LL genotype. These results broaden the functional link around the vgll3 genome region and help us understand constraints in the evolution of life history variation in salmon. Our results further highlight the need to account for genetic correlations between fitness traits when predicting demographic changes in changing environments.


2019 ◽  
Author(s):  
Jukka-Pekka Verta ◽  
Paul Vincent Debes ◽  
Nikolai Piavchenko ◽  
Annukka Ruokolainen ◽  
Outi Ovaskainen ◽  
...  

AbstractA major goal in biology is to understand how evolution shapes variation in individual life histories. Genome-wide association studies have been successful in uncovering genome regions linked with traits underlying life history variation in a range of species. However, lack of functional studies of the discovered genotype-phenotype associations severely restrains our understanding how alternative life history traits evolved and are mediated at the molecular level. Here, we report a cis-regulatory mechanism whereby expression of alternative isoforms of the transcription co-factor vestigial-like 3 (vgll3) associate with variation in a key life history trait, age at maturity, in Atlantic salmon (Salmo salar). Using a common-garden experiment, we first show that vgll3 genotype associates with puberty timing in one-year-old salmon males. By way of temporal sampling of vgll3 expression in ten tissues across the first year of salmon development, we identify a pubertal transition in vgll3 expression where maturation coincided with a 66% reduction in testicular vgll3 expression. The late maturation allele was not only associated with a tendency to delay puberty, but also with expression of a rare transcript isoform of vgll3 pre-puberty. By comparing absolute vgll3 mRNA copies in heterozygotes we show that the expression difference between the early and late maturity alleles is largely cis-regulatory. We propose a model whereby expression of a rare isoform from the late allele shifts the liability of its carriers towards delaying puberty. These results reveal how regulatory differences can be a central mechanism for the evolution of life history traits.Author summaryAlternative life history strategies are an important source of diversity within populations and promote the maintenance of adaptive capacity and population resilience. However, in many cases the molecular basis of different life history strategies remains elusive. Age at maturity is a key adaptive life history trait in Atlantic salmon and has a relatively simple genetic basis. Using salmon age at maturity as a model, we report a mechanism whereby different transcript isoforms of the key age at maturity gene, vestigial-like 3 (vgll3), associate with variation in the timing of male puberty. Our results show how gene regulatory differences in conjunction with variation in gene transcript structure can encode for complex alternative life histories.



2021 ◽  
Author(s):  
Jenni M. Prokkola ◽  
Eirik R Åsheim ◽  
Sergey Morozov ◽  
Paul Bangura ◽  
Jaakko Erkinaro ◽  
...  

1. The physiological underpinnings of life history adaptations in ectotherms are not well understood. Theories suggest energy metabolism influences life history variation via modulation of resource acquisition. However, the genetic basis of this relation and its dependence on ecological conditions, such as food availability, have rarely been characterized, despite being critical to predicting the responses of populations to environmental changes. 2. The Atlantic salmon (Salmo salar) is an emerging wild model species for addressing these questions; strong genetic determination of age-at-maturity at two unlinked genomic regions (vgll3 and six6) enables the use of complex experimental designs and tests of hypotheses on the physiological and genetic basis of life-history trait variation. 3. In this study, we crossed salmon to obtain individuals with all combinations of late and early maturation genotypes for vgll3 and six6 within full-sib families. Using more than 250 juveniles in common garden conditions, we tested (i) whether metabolic phenotypes (i.e., standard and maximum metabolic rates, and absolute aerobic scope) were correlated with the age-at-maturity genotypes and (ii) if high vs. low food availability modulated the relationship. 4. We found that salmon with vgll3 early maturation genotype had a higher aerobic scope and maximum metabolic rate, but not standard metabolic rate, compared to salmon with vgll3 late maturation genotype. This suggests that physiological or structural pathways regulating maximum oxygen supply or demand are potentially important for the determination of age-at-maturity in Atlantic salmon. 5. Vgll3 and six6 exhibited physiological epistasis, whereby maximum metabolic rate significantly decreased when late maturation genotypes were present concurrently in both loci compared to other genotype combinations. 6. The growth of the feed restricted group decreased substantially compared to the high food group. However, the effects of life-history genomic regions were similar in both feeding regimes, indicating a lack of genotype-by-environment interactions. 7. Our results indicate that aerobic performance of juvenile salmon may affect their age-at-maturity. The results may help to better understand the mechanistic basis of life-history variation, and the metabolic constrains on life-history evolution.



2019 ◽  
Author(s):  
Paul V Debes ◽  
Nikolai Piavchenko ◽  
Annukka Ruokolainen ◽  
Outi Ovaskainen ◽  
Jacqueline E Moustakas-Verho ◽  
...  

AbstractMaturation timing is a pivotal life-history trait balancing probabilities between mortality and reproduction. Environmental vs. genetic contributions to traits associated with maturation initiation, such as growth and body condition, remain uncertain because of difficulties in determining causality. In Atlantic salmon, maturation timing associates with a large-effect locus around vgll3, but how this locus affects maturation remains unknown. We combined controlled breeding with common-garden experimentation at two temperatures and show that vgll3 effects on maturation of males express primarily via body condition, which we demonstrate in the males’ non-maturing female relatives, thus avoiding reverse causality. Between homozygous vgll3 genotypes, maturation probability differed several folds and female condition differed 2% in both temperature environments. Vgll3 effects explained 25 and 16% of maturation probability heritability and 15 and 6% of female condition heritability, in the warm and cold environment, respectively. Non-significant vgll3 effects on female length were antagonistic to those on condition but of equal proportional size. When controlling for vgll3 effects, genetic correlations changed antagonistically between both maturation and condition vs. growth, suggesting vgll3 as a resource-allocation locus. The results support large vgll3 maturation effects being mediated via environmentally stable body condition effects, enabling rapid co-evolution between the life-history traits.



Author(s):  
Charles D. Waters ◽  
Anthony Clemento ◽  
Tutku Aykanat ◽  
John Carlos Garza ◽  
Kerry A. Naish ◽  
...  

AbstractUnderstanding the genetic basis of repeated evolution of the same phenotype across taxa is a fundamental aim in evolutionary biology and has applications to conservation and management. However, the extent to which interspecific life-history trait polymorphisms share evolutionary pathways remains under-explored. We address this gap by studying the genetic basis of a key life-history trait, age at maturity, in four species of Pacific salmon (genus Oncorhynchus) that exhibit intra- and interspecific variation in this trait – Chinook Salmon, Coho Salmon, Sockeye Salmon, and Steelhead Trout. We tested for associations in all four species between age at maturity and two genome regions, six6 and vgll3, that are strongly associated with the same trait in Atlantic Salmon (Salmo salar). We also conducted a genome-wide association analysis in Steelhead to assess whether additional regions were associated with this trait. We found the genetic basis of age at maturity to be heterogeneous across salmonid species. Significant associations between six6 and age at maturity were observed in two of the four species, Sockeye and Steelhead, with the association in Steelhead being particularly strong in both sexes (p = 4.46×10−9 after adjusting for genomic inflation). However, no significant associations were detected between age at maturity and the vgll3 genome region in any of the species, despite its strong association with the same trait in Atlantic Salmon. We discuss possible explanations for the heterogeneous nature of the genetic architecture of this key life-history trait, as well as the implications of our findings for conservation and management.



2021 ◽  
Author(s):  
Anik Dutta ◽  
Fanny E. Hartmann ◽  
Carolina Sardinha Francisco ◽  
Bruce A. McDonald ◽  
Daniel Croll

AbstractThe adaptive potential of pathogens in novel or heterogeneous environments underpins the risk of disease epidemics. Antagonistic pleiotropy or differential resource allocation among life-history traits can constrain pathogen adaptation. However, we lack understanding of how the genetic architecture of individual traits can generate trade-offs. Here, we report a large-scale study based on 145 global strains of the fungal wheat pathogen Zymoseptoria tritici from four continents. We measured 50 life-history traits, including virulence and reproduction on 12 different wheat hosts and growth responses to several abiotic stressors. To elucidate the genetic basis of adaptation, we used genome-wide association mapping coupled with genetic correlation analyses. We show that most traits are governed by polygenic architectures and are highly heritable suggesting that adaptation proceeds mainly through allele frequency shifts at many loci. We identified negative genetic correlations among traits related to host colonization and survival in stressful environments. Such genetic constraints indicate that pleiotropic effects could limit the pathogen’s ability to cause host damage. In contrast, adaptation to abiotic stress factors was likely facilitated by synergistic pleiotropy. Our study illustrates how comprehensive mapping of life-history trait architectures across diverse environments allows to predict evolutionary trajectories of pathogens confronted with environmental perturbations.



2018 ◽  
Author(s):  
Jacob W. Malcom ◽  
Thomas E. Juenger ◽  
Mathew A. Leibold

ABSTRACTBackgroundIdentifying the molecular basis of heritable variation provides insight into the underlying mechanisms generating phenotypic variation and the evolutionary history of organismal traits. Life history trait variation is of central importance to ecological and evolutionary dynamics, and contemporary genomic tools permit studies of the basis of this variation in non-genetic model organisms. We used high density genotyping, RNA-Seq gene expression assays, and detailed phenotyping of fourteen ecologically important life history traits in a wild-caught panel of 32Daphnia pulexclones to explore the molecular basis of trait variation in a model ecological species.ResultsWe found extensive phenotypic and a range of heritable genetic variation (~0 < H2< 0.44) in the panel, and accordingly identify 75-261 genes—organized in 3-6 coexpression modules—associated with genetic variation in each trait. The trait-related coexpression modules possess well-supported promoter motifs, and in conjunction with marker variation at trans- loci, suggest a relatively small number of important expression regulators. We further identify a candidate genetic network with SNPs in eight known transcriptional regulators, and dozens of differentially expressed genes, associated with life history variation. The gene-trait associations include numerous un-annotated genes, but also support several a priori hypotheses, including an ecdysone-induced protein and several Gene Ontology pathways.ConclusionThe genetic and gene expression architecture ofDaphnialife history traits is complex, and our results provide numerous candidate loci, genes, and coexpression modules to be tested as the molecular mechanisms that underlieDaphniaeco-evolutionary dynamics.



2013 ◽  
Vol 145 ◽  
pp. 6-14 ◽  
Author(s):  
I. Kallio-Nyberg ◽  
M. Salminen ◽  
T. Pakarinen ◽  
M.-L. Koljonen


1992 ◽  
Vol 33 (4) ◽  
pp. 331-340 ◽  
Author(s):  
John E. Thorpe ◽  
Neil B. Metcalfe ◽  
Felicity A. Huntingford


2011 ◽  
Vol 20 (9) ◽  
pp. 1795-1798 ◽  
Author(s):  
PETER KLEPSATEL ◽  
THOMAS FLATT


2005 ◽  
Vol 288 (5) ◽  
pp. R1226-R1236 ◽  
Author(s):  
Mauricio Avigdor ◽  
Shannon D. Sullivan ◽  
Paul D. Heideman

Natural variation in neuroendocrine traits is poorly understood, despite the importance of variation in brain function and evolution. Most rodents in the temperate zones inhibit reproduction and other nonessential functions in short winter photoperiods, but some have little or no reproductive response. We tested whether genetic variability in reproductive seasonality is related to individual differences in the neuronal function of the gonadotropin-releasing hormone network, as assessed by the number and location of mature gonadotropin-releasing hormone-secreting neurons under inhibitory and excitatory photoperiods. The experiments used lines of Peromyscus leucopus previously developed by selection from a wild population. One line contained individuals reproductively inhibited by short photoperiod, and the other line contained individuals nonresponsive to short photoperiod. Expression of mature gonadotropin-releasing hormone (GnRH) immunoreactivity in the brain was detected using SMI-41 antibody in the single-labeled avidin-biotin-peroxidase-complex method. Nonresponsive mice had 50% more immunoreactive GnRH neurons than reproductively inhibited mice in both short- and long-day photoperiods. The greatest differences were in the anterior hypothalamus and preoptic areas. In contrast, we detected no significant within-lines differences in the number or location of immunoreactive GnRH neurons between photoperiod treatments. Our data indicate that high levels of genetic variation in a single wild population for a specific neuronal trait are related to phenotypic variation in a life history trait, i.e., winter reproduction. Variation in GnRH neuronal activity may underlie some of the natural reproductive and life history variation observed in wild populations of P. leucopus. Similar genetic variation in neuronal traits may be present in humans and other species.



Sign in / Sign up

Export Citation Format

Share Document