scholarly journals Insights into Origin and Evolution of α-proteobacterial Gene Transfer Agents

2017 ◽  
Author(s):  
Migun Shakya ◽  
Shannon M. Soucy ◽  
Olga Zhaxybayeva

AbstractSeveral bacterial and archaeal lineages produce nanostructures that morphologically resemble small tailed viruses, but, unlike most viruses, contain apparently random pieces of the host genome. Since these elements can deliver the packaged DNA to other cells, they were dubbed Gene Transfer Agents (GTAs). Because many genes involved in GTA production have viral homologs, it has been hypothesized that the GTA ancestor was a virus. Whether GTAs represent an atypical virus, a defective virus, or a virus co-opted by the prokaryotes for some function, remains to be elucidated. To evaluate these possibilities, we examined the distribution and evolutionary histories of genes that encode a GTA in the α-proteobacteriumRhodobacter capsulatus(RcGTA). We report that although homologs of many individual RcGTA genes are abundant across bacteria and their viruses, RcGTA-like genomes are mainly found in one subclade of α-proteobacteria. When compared to the viral homologs, genes of the RcGTA-like genomes evolve significantly slower, and do not have higher %A+T nucleotides than their host chromosomes. Moreover, they appear to reside in stable regions of the bacterial chromosomes that are generally conserved across taxonomic orders. These findings argue against RcGTA being an atypical or a defective virus. Our phylogenetic analyses suggest that RcGTA ancestor likely originated in the lineage that gave rise to contemporary α-proteobacterial ordersRhizobiales, Rhodobacterales, Caulobacterales, Parvularculales, and Sphingomonadales,and since that time the RcGTA-like element has co-evolved with its host chromosomes. Such evolutionary history is compatible with maintenance of these elements by bacteria due to some selective advantage. As for many other prokaryotic traits, horizontal gene transfer played a substantial role in the evolution of RcGTA-like elements, not only in shaping its genome components within the orders, but also in occasional dissemination of RcGTA-like regions across the orders and even to different bacterial phyla.

Author(s):  
Emma Esterman ◽  
Yuri I. Wolf ◽  
Roman Kogay ◽  
Eugene V. Koonin ◽  
Olga Zhaxybayeva

AbstractGene transfer agents (GTAs) are virus-like particles encoded and produced by many bacteria and archaea. Unlike viruses, GTAs package fragments of the host genome instead of the genes that encode the components of the GTA itself. As a result of this non-specific DNA packaging, GTAs can transfer genes within bacterial and archaeal communities. GTAs clearly evolved from viruses and are thought to have been maintained in prokaryotic genomes due to the advantages associated with their DNA transfer capacity. The most-studied GTA is produced by the alphaproteobacterium Rhodobacter capsulatus (RcGTA), which packages random portions of the host genome at a lower DNA density than usually observed in tailed bacterial viruses. How the DNA packaging properties of RcGTA evolved from those of the ancestral virus remains unknown. To address this question, we reconstructed the evolutionary history of the large subunit of the terminase (TerL), a highly conserved enzyme used by viruses and GTAs to package DNA. We found that RcGTA-like TerLs grouped within viruses that employ the headful packaging strategy. Because distinct mechanisms of viral DNA packaging correspond to differences in the TerL amino acid sequence, our finding suggests that RcGTA evolved from a headful packaging virus. Headful packaging is the least sequence-specific mode of DNA packaging, which would facilitate the switch from packaging of the viral genome to packaging random pieces of the host genome during GTA evolution.


2019 ◽  
Vol 11 (10) ◽  
pp. 2941-2953 ◽  
Author(s):  
Roman Kogay ◽  
Taylor B Neely ◽  
Daniel P Birnbaum ◽  
Camille R Hankel ◽  
Migun Shakya ◽  
...  

Abstract Many of the sequenced bacterial and archaeal genomes encode regions of viral provenance. Yet, not all of these regions encode bona fide viruses. Gene transfer agents (GTAs) are thought to be former viruses that are now maintained in genomes of some bacteria and archaea and are hypothesized to enable exchange of DNA within bacterial populations. In Alphaproteobacteria, genes homologous to the “head–tail” gene cluster that encodes structural components of the Rhodobacter capsulatus GTA (RcGTA) are found in many taxa, even if they are only distantly related to Rhodobacter capsulatus. Yet, in most genomes available in GenBank RcGTA-like genes have annotations of typical viral proteins, and therefore are not easily distinguished from their viral homologs without additional analyses. Here, we report a “support vector machine” classifier that quickly and accurately distinguishes RcGTA-like genes from their viral homologs by capturing the differences in the amino acid composition of the encoded proteins. Our open-source classifier is implemented in Python and can be used to scan homologs of the RcGTA genes in newly sequenced genomes. The classifier can also be trained to identify other types of GTAs, or even to detect other elements of viral ancestry. Using the classifier trained on a manually curated set of homologous viruses and GTAs, we detected RcGTA-like “head–tail” gene clusters in 57.5% of the 1,423 examined alphaproteobacterial genomes. We also demonstrated that more than half of the in silico prophage predictions are instead likely to be GTAs, suggesting that in many alphaproteobacterial genomes the RcGTA-like elements remain unrecognized.


Microbiome ◽  
2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Wei Lin ◽  
Wensi Zhang ◽  
Greig A. Paterson ◽  
Qiyun Zhu ◽  
Xiang Zhao ◽  
...  

Abstract Background The discovery of membrane-enclosed, metabolically functional organelles in Bacteria has transformed our understanding of the subcellular complexity of prokaryotic cells. Biomineralization of magnetic nanoparticles within magnetosomes by magnetotactic bacteria (MTB) is a fascinating example of prokaryotic organelles. Magnetosomes, as nano-sized magnetic sensors in MTB, facilitate cell navigation along the local geomagnetic field, a behaviour referred to as magnetotaxis or microbial magnetoreception. Recent discovery of novel MTB outside the traditionally recognized taxonomic lineages suggests that MTB diversity across the domain Bacteria are considerably underestimated, which limits understanding of the taxonomic distribution and evolutionary origin of magnetosome organelle biogenesis. Results Here, we perform the most comprehensive metagenomic analysis available of MTB communities and reconstruct metagenome-assembled MTB genomes from diverse ecosystems. Discovery of MTB in acidic peatland soils suggests widespread MTB occurrence in waterlogged soils in addition to subaqueous sediments and water bodies. A total of 168 MTB draft genomes have been reconstructed, which represent nearly a 3-fold increase over the number currently available and more than double the known MTB species at the genome level. Phylogenomic analysis reveals that these genomes belong to 13 Bacterial phyla, six of which were previously not known to include MTB. These findings indicate a much wider taxonomic distribution of magnetosome organelle biogenesis across the domain Bacteria than previously thought. Comparative genome analysis reveals a vast diversity of magnetosome gene clusters involved in magnetosomal biogenesis in terms of gene content and synteny residing in distinct taxonomic lineages. Phylogenetic analyses of core magnetosome proteins in this largest available and taxonomically diverse dataset support an unexpectedly early evolutionary origin of magnetosome biomineralization, likely ancestral to the origin of the domain Bacteria. Conclusions These findings expand the taxonomic and phylogenetic diversity of MTB across the domain Bacteria and shed new light on the origin and evolution of microbial magnetoreception. Potential biogenesis of the magnetosome organelle in the close descendants of the last bacterial common ancestor has important implications for our understanding of the evolutionary history of bacterial cellular complexity and emphasizes the biological significance of the magnetosome organelle.


2019 ◽  
Vol 202 (2) ◽  
Author(s):  
Purvikalyan Pallegar ◽  
Lourdes Peña-Castillo ◽  
Evan Langille ◽  
Mark Gomelsky ◽  
Andrew S. Lang

ABSTRACT Gene transfer agents (GTAs) are bacteriophage-like particles produced by several bacterial and archaeal lineages that contain small pieces of the producing cells’ genomes that can be transferred to other cells in a process similar to transduction. One well-studied GTA is RcGTA, produced by the alphaproteobacterium Rhodobacter capsulatus. RcGTA gene expression is regulated by several cellular regulatory systems, including the CckA-ChpT-CtrA phosphorelay. The transcription of multiple other regulator-encoding genes is affected by the response regulator CtrA, including genes encoding putative enzymes involved in the synthesis and hydrolysis of the second messenger bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP). To investigate whether c-di-GMP signaling plays a role in RcGTA production, we disrupted the CtrA-affected genes potentially involved in this process. We found that disruption of four of these genes affected RcGTA gene expression and production. We performed site-directed mutagenesis of key catalytic residues in the GGDEF and EAL domains responsible for diguanylate cyclase (DGC) and c-di-GMP phosphodiesterase (PDE) activities and analyzed the functions of the wild-type and mutant proteins. We also measured RcGTA production in R. capsulatus strains where intracellular levels of c-di-GMP were altered by the expression of either a heterologous DGC or a heterologous PDE. This adds c-di-GMP signaling to the collection of cellular regulatory systems controlling gene transfer in this bacterium. Furthermore, the heterologous gene expression and the four gene disruptions had similar effects on R. capsulatus flagellar motility as found for gene transfer, and we conclude that c-di-GMP inhibits both RcGTA production and flagellar motility in R. capsulatus. IMPORTANCE Gene transfer agents (GTAs) are virus-like particles that move cellular DNA between cells. In the alphaproteobacterium Rhodobacter capsulatus, GTA production is affected by the activities of multiple cellular regulatory systems, to which we have now added signaling via the second messenger dinucleotide molecule bis-(3′-5′)-cyclic dimeric GMP (c-di-GMP). Similar to the CtrA phosphorelay, c-di-GMP also affects R. capsulatus flagellar motility in addition to GTA production, with lower levels of intracellular c-di-GMP favoring increased flagellar motility and gene transfer. These findings further illustrate the interconnection of GTA production with global systems of regulation in R. capsulatus, providing additional support for the notion that the production of GTAs has been maintained in this and related bacteria because it provides a benefit to the producing organisms.


2021 ◽  
Vol 9 (6) ◽  
pp. 1115
Author(s):  
Kathryn Forcone ◽  
Felipe H. Coutinho ◽  
Giselle S. Cavalcanti ◽  
Cynthia B. Silveira

Roseobacters are globally abundant bacteria with critical roles in carbon and sulfur biogeochemical cycling. Here, we identified 173 new putative prophages in 79 genomes of Rhodobacteraceae. These prophages represented 1.3 ± 0.15% of the bacterial genomes and had no to low homology with reference and metagenome-assembled viral genomes from aquatic and terrestrial ecosystems. Among the newly identified putative prophages, 35% encoded auxiliary metabolic genes (AMGs), mostly involved in secondary metabolism, amino acid metabolism, and cofactor and vitamin production. The analysis of integration sites and gene homology showed that 22 of the putative prophages were actually gene transfer agents (GTAs) similar to a GTA of Rhodobacter capsulatus. Twenty-three percent of the predicted prophages were observed in the TARA Oceans viromes generated from free viral particles, suggesting that they represent active prophages capable of induction. The distribution of these prophages was significantly associated with latitude and temperature. The prophages most abundant at high latitudes encoded acpP, an auxiliary metabolic gene involved in lipid synthesis and membrane fluidity at low temperatures. Our results show that prophages and gene transfer agents are significant sources of genomic diversity in roseobacter, with potential roles in the ecology of this globally distributed bacterial group.


2019 ◽  
Author(s):  
Mustafa O. Jibrin ◽  
Gerald V. Minsavage ◽  
Erica M. Goss ◽  
Pamela D. Roberts ◽  
Jeffrey B. Jones

AbstractBackgroundGene transfer agents (GTAs) are phage-like mediators of gene transfer in bacterial species. Typically, strains of a bacteria species which have GTA shows more recombination than strains without GTAs. GTA-mediated gene transfer activity has been shown for few bacteria, with Rhodobacter capsulatus being the prototypical GTA. GTA have not been previously studied in plant pathogenic bacteria. A recent study inferring recombination in strains of the bacterial spot xanthomonads identified a Nigerian lineage which showed unusual recombination background. We initially set out to understand genomic drivers of recombination in this genome by focusing on mobile genetic elements.ResultsWe identified a unique cluster which was present in the Nigerian strain but absent in other sequenced strains of bacterial spot xanthomonads. The protein sequence of a gene within this cluster contained the GTA_TIM domain that is present in bacteria with GTA. We identified GTA clusters in other Xanthomonas species as well as species of Agrobacterium and Pantoea. Recombination analyses showed that generally, strains of Xanthomonas with GTA have more inferred recombination events than strains without GTA, which could lead to genome divergence.ConclusionThis study identified GTA clusters in species of the plant pathogen genera Xanthomonas, Agrobacterium and Pantoea which we have named XpGTA, AgGTA and PaGTA respectively. Our recombination analyses suggest that Xanthomonas strains with GTA generally have more inferred recombination events than strains without GTA. The study is important in understanding the drivers of evolution of bacterial plant pathogens.


2020 ◽  
Author(s):  
Wei Lin ◽  
Wensi Zhang ◽  
Greig A. Paterson ◽  
Qiyun Zhu ◽  
Xiang Zhao ◽  
...  

AbstractThe discovery of membrane-enclosed, metabolically functional organelles in Bacteria and Archaea has transformed our understanding of the subcellular complexity of prokaryotic cells. However, whether prokaryotic organelles emerged early or late in evolutionary history remains unclear and limits understanding of the nature and cellular complexity of early life. Biomineralization of magnetic nanoparticles within magnetosomes by magnetotactic bacteria (MTB) is a fascinating example of prokaryotic organelles. Here, we reconstruct 168 metagenome-assembled MTB genomes from various aquatic environments and waterlogged soils. These genomes represent nearly a 3-fold increase over the number currently available, and more than double the known MTB species. Phylogenomic analysis reveals that these newly described genomes belong to 13 Bacterial phyla, six of which were previously not known to include MTB. These findings indicate a much wider taxonomic distribution of magnetosome organelle biogenesis across the domain Bacteria than previously thought. Comparative genome analysis reveals a vast diversity of magnetosome gene clusters involved in magnetosomal biogenesis in terms of gene content and synteny residing in distinct taxonomic lineages. These gene clusters therefore represent a promising, diverse genetic resource for biosynthesizing novel magnetic nanoparticles. Finally, our phylogenetic analyses of the core magnetosome proteins in this largest available and taxonomically diverse dataset support an unexpectedly early evolutionary origin of magnetosome biomineralization, likely ancestral to the origin of the domain Bacteria. These findings emphasize the potential biological significance of prokaryotic organelles on the early Earth and have important implications for our understanding of the evolutionary history of cellular complexity.


2019 ◽  
Vol 37 (2) ◽  
pp. 379-394
Author(s):  
Aida Arcas ◽  
David G Wilkinson ◽  
M Ángela Nieto

Abstract Eph receptor (Eph) and ephrin signaling regulate fundamental developmental processes through both forward and reverse signaling triggered upon cell–cell contact. In vertebrates, they are both classified into classes A and B, and some representatives have been identified in many metazoan groups, where their expression and functions have been well studied. We have extended previous phylogenetic analyses and examined the presence of Eph and ephrins in the tree of life to determine their origin and evolution. We have found that 1) premetazoan choanoflagellates may already have rudimental Eph/ephrin signaling as they have an Eph-/ephrin-like pair and homologs of downstream-signaling genes; 2) both forward- and reverse-downstream signaling might already occur in Porifera since sponges have most genes involved in these types of signaling; 3) the nonvertebrate metazoan Eph is a type-B receptor that can bind ephrins regardless of their membrane-anchoring structure, glycosylphosphatidylinositol, or transmembrane; 4) Eph/ephrin cross-class binding is specific to Gnathostomata; and 5) kinase-dead Eph receptors can be traced back to Gnathostomata. We conclude that Eph/ephrin signaling is of older origin than previously believed. We also examined the presence of protein domains associated with functional characteristics and the appearance and conservation of downstream-signaling pathways to understand the original and derived functions of Ephs and ephrins. We find that the evolutionary history of these gene families points to an ancestral function in cell–cell interactions that could contribute to the emergence of multicellularity and, in particular, to the required segregation of cell populations.


2019 ◽  
Author(s):  
Mustafa O Jibrin ◽  
Gerald V. Minsavage ◽  
Erica M. Goss ◽  
Pamela D. Roberts ◽  
Jeffrey B Jones

Abstract Background Gene transfer agents (GTAs) are phage-like mediators of gene transfer in bacterial species. Typically, strains of a bacteria species which have GTA shows more recombination than strains without GTAs. GTA-mediated gene transfer activity has been shown for few bacteria, with Rhodobacter capsulatus being the prototypical GTA. GTA have not been previously studied in plant pathogenic bacteria. A recent study inferring recombination in strains of the bacterial spot xanthomonads identified a Nigerian lineage which showed unusual recombination background. We initially set out to understand genomic drivers of recombination in this genome by focusing on mobile genetic elements. Results We identified a unique cluster which was present in the Nigerian strain but absent in other sequenced strains of bacterial spot xanthomonads. The protein sequence of a gene within this cluster contained the GTA_TIM domain that is present in bacteria with GTA. We identified GTA clusters in other Xanthomonas species as well as species of Agrobacterium and Pantoea. Recombination analyses showed that generally, strains of Xanthomonas with GTA have more inferred recombination events than strains without GTA, which could lead to genome divergence.Conclusion This study identified GTA clusters in species of the plant pathogen genera Xanthomonas, Agrobacterium and Pantoea which we have named XpGTA, AgGTA and PaGTA respectively. Our recombination analyses suggest that Xanthomonas strains with GTA generally have more inferred recombination events than strains without GTA. The study is important in understanding the drivers of evolution of bacterial plant pathogens.


Sign in / Sign up

Export Citation Format

Share Document