scholarly journals Impact and cost-effectiveness of nonavalent human papillomavirus vaccination in Switzerland: insights from a dynamic transmission model

2019 ◽  
Author(s):  
Maurane Riesen ◽  
Johannes A. Bogaards ◽  
Nicola Low ◽  
Christian L. Althaus

ABSTRACTAIMIn Switzerland, human papillomavirus (HPV) vaccination has been implemented using a quadrivalent vaccine that covers HPV types 16 and 18, responsible for about 70% of cervical cancer. The average national uptake was 56% in girls by the age of 16 years in 2014–2016. A nonavalent vaccine, covering five additional oncogenic HPV types was recommended at the end of 2018. The primary aim of this study was to assess the impact and cost-effectiveness of introducing the nonavalent HPV vaccine in Switzerland compared with the quadrivalent vaccine.METHODSWe developed a dynamic transmission model that describes the spread of 10 high risk HPV types. We informed the model with Swiss data about sexual behaviour and cervical cancer screening, and calibrated the model to cervical cancer incidence in Switzerland. We modelled the impact of quadrivalent and nonavalent vaccines at the achieved (56%) and national recommended uptake (80%) in girls. We calculated the incremental cost-effectiveness ratio (ICER) between the nonavalent vaccine, the quadrivalent vaccine and no vaccination. We evaluated costs linked to cervical cancer screening, treatment of different disease stages and vaccination in a sensitivity analysis.RESULTSCompared with quadrivalent HPV vaccination in Switzerland at 56% uptake, vaccinating with the nonavalent vaccine would avert 1,175 cervical cancer deaths, 3,641 cases of cervical cancer and 106,898 CIN treatments over 100 years at 56% uptake. Compared with the quadrivalent vaccine, which would prevent an estimated 67% and 72% of cervical cancer cases at 56% and 80% coverage, the nonavalent vaccine would prevent 83% and 89% of all cervical cancers at the same coverage rates. The sensitivity analysis shows that introducing the nonavalent vaccination should improve health outcomes and offers a cost-saving alternative to the quadrivalent vaccine under the current price difference.CONCLUSIONSAll scenarios with quadrivalent and nonavalent vaccination are likely to be cost-effective compared with no vaccination. Switching to the nonavalent vaccine at current and improved vaccination uptake is likely to be cost-saving under the investigated price difference.

2016 ◽  
Vol 12 (6) ◽  
pp. 1363-1372 ◽  
Author(s):  
Harrell W. Chesson ◽  
Lauri E. Markowitz ◽  
Susan Hariri ◽  
Donatus U. Ekwueme ◽  
Mona Saraiya

2018 ◽  
Vol 147 ◽  
Author(s):  
Taito Kitano

AbstractThe mumps vaccine is not included in the national immunisation programme (NIP) of approximately 80 countries including Japan. To investigate the vaccine's cost-effectiveness, we developed a dynamic transmission model for routine one- and two-dose mumps vaccination programs in Japan. We calculated the incremental cost-effectiveness ratio compared with a current programme over a projected 50-year period. We created a Japanese population model and performed dynamic simulation to estimate the number of patients enrolled in the current programme, the routine one-dose programme, and the routine two-dose programme over the next 50 years using the Berkeley Madonna program. We estimated the medical and social costs of natural mumps infections and vaccinations to analyse cost-effectiveness. Finally, we performed a sensitivity analysis with parameters including vaccine cost, vaccine efficacy, medical costs per case, social costs per case, incidence of adverse events and discount rate. Base case analysis showed that both the one-dose and two-dose programmes predominated and that quality-adjusted life years (QALYs) were saved, compared with the current programme. The medical costs, total cost and QALYs saved during the study period in the two-dose programme compared with the current programme were 217 billion JPY, 860 billion JPY and 184 779, respectively. The two-dose programme surpassed the one-dose programme throughout the study period. In all the scenarios of the sensitivity analysis, two-dose vaccination was better than the one-dose programme. This simulation confirmed that the routine two-dose vaccination programme was more cost-effective and QALY-saving than either the one-dose programme or the current programme. Because of the variability of the results between the various models, further simulations with different models should be conducted.


2020 ◽  
Vol 111 (2) ◽  
pp. 182-192 ◽  
Author(s):  
Marie-Claude Breton ◽  
Liping Huang ◽  
Sonya J. Snedecor ◽  
Noelle Cornelio ◽  
Fiorella Fanton-Aita

Abstract Objective Serogroup B meningococci (MnB) are now the largest cause of invasive meningococcal disease (IMD) in Canada. We assessed the clinical and economic impact of 3 adolescent MenB-FHbp immunization strategies. Methods A population-based dynamic transmission model was developed to simulate the transmission of MnB among the entire Canadian population over a 30-year time horizon. Age group-based IMD incidence, bacterial carriage and transmission, disease outcomes, costs, and impact on quality of life were obtained from Canadian surveillance data and published literature. The vaccine was assumed to provide 85% protection against IMD and 26.6% against carriage acquisition. The model estimated the impact of routine vaccination with MenB-FHbp in 3 strategies: (1) age 14, along with existing school-based programs, with 75% uptake; (2) age 17 with 75% uptake, assuming school vaccination; and (3) age 17 with 30% uptake, assuming vaccination outside of school. Costs were calculated from the Canadian societal perspective. Results With no vaccination, an estimated 3974 MnB cases would be expected over 30 years. Vaccination with strategies 1–3 were estimated to avert 688, 1033, and 575 cases, respectively. These outcomes were associated with incremental costs per quality-adjusted life-year of $976,000, $685,000, and $490,000. Conclusions Our model indicated that if the vaccine reduces risk of carriage acquisition, vaccination of older adolescents, even at lower uptake, could have a significant public health impact. Due to low disease incidence, MnB vaccination is unlikely to meet widely accepted cost-effectiveness thresholds, but evaluations of new programs should consider the overall benefits of the vaccination.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254080
Author(s):  
Manjiri Pawaskar ◽  
Colleen Burgess ◽  
Mathew Pillsbury ◽  
Torbjørn Wisløff ◽  
Elmira Flem

Background Norway has not implemented universal varicella vaccination, despite the considerable clinical and economic burden of varicella disease. Methods An existing dynamic transmission model of varicella infection was calibrated to age-specific seroprevalence rates in Norway. Six two-dose vaccination strategies were considered, consisting of combinations of two formulations each of a monovalent varicella vaccine (Varivax® or Varilrix®) and a quadrivalent vaccine against measles-mumps-rubella-varicella (ProQuad® or PriorixTetra®), with the first dose given with a monovalent vaccine at age 15 months, and the second dose with either a monovalent or quadrivalent vaccine at either 18 months, 7 or 11 years. Costs were considered from the perspectives of both the health care system and society. Quality-adjusted life-years saved and incremental cost-effectiveness ratios relative to no vaccination were calculated. A one-way sensitivity analysis was conducted to assess the impact of vaccine efficacy, price, the costs of a lost workday and of inpatient and outpatient care, vaccination coverage, and discount rate. Results In the absence of varicella vaccination, the annual incidence of natural varicella is estimated to be 1,359 per 100,000 population, and the cumulative numbers of varicella outpatient cases, hospitalizations, and deaths over 50 years are projected to be 1.81 million, 10,161, and 61, respectively. Universal varicella vaccination is projected to reduce the natural varicella incidence rate to 48–59 per 100,000 population, depending on the vaccination strategy, and to reduce varicella outpatient cases, hospitalizations, and deaths by 75–85%, 67–79%, and 75–79%, respectively. All strategies were cost-saving, with the most cost-saving as two doses of Varivax® at 15 months and 7 years (payer perspective) and two doses of Varivax® at 15 months and 18 months (societal perspective). Conclusions All modeled two-dose varicella vaccination strategies are projected to lead to substantial reductions in varicella disease and to be cost saving compared to no vaccination in Norway.


2019 ◽  
Vol 70 (1) ◽  
pp. 26-29 ◽  
Author(s):  
Tinevimbo Shiri ◽  
Angela Loyse ◽  
Lawrence Mwenge ◽  
Tao Chen ◽  
Shabir Lakhi ◽  
...  

Abstract Background Mortality from cryptococcal meningitis remains very high in Africa. In the Advancing Cryptococcal Meningitis Treatment for Africa (ACTA) trial, 2 weeks of fluconazole (FLU) plus flucytosine (5FC) was as effective and less costly than 2 weeks of amphotericin-based regimens. However, many African settings treat with FLU monotherapy, and the cost-effectiveness of adding 5FC to FLU is uncertain. Methods The effectiveness and costs of FLU+5FC were taken from ACTA, which included a costing analysis at the Zambian site. The effectiveness of FLU was derived from cohorts of consecutively enrolled patients, managed in respects other than drug therapy, as were participants in ACTA. FLU costs were derived from costs of FLU+5FC in ACTA, by subtracting 5FC drug and monitoring costs. The cost-effectiveness of FLU+5FC vs FLU alone was measured as the incremental cost-effectiveness ratio (ICER). A probabilistic sensitivity analysis assessed uncertainties and a bivariate deterministic sensitivity analysis examined the impact of varying mortality and 5FC drug costs on the ICER. Results The mean costs per patient were US $847 (95% confidence interval [CI] $776–927) for FLU+5FC, and US $628 (95% CI $557–709) for FLU. The 10-week mortality rate was 35.1% (95% CI 28.9–41.7%) with FLU+5FC and 53.8% (95% CI 43.1–64.1%) with FLU. At the current 5FC price of US $1.30 per 500 mg tablet, the ICER of 5FC+FLU versus FLU alone was US $65 (95% CI $28–208) per life-year saved. Reducing the 5FC cost to between US $0.80 and US $0.40 per 500 mg resulted in an ICER between US $44 and US $28 per life-year saved. Conclusions The addition of 5FC to FLU is cost-effective for cryptococcal meningitis treatment in Africa and, if made available widely, could substantially reduce mortality rates among human immunodeficiency virus–infected persons in Africa.


Sign in / Sign up

Export Citation Format

Share Document