scholarly journals Localization of the signal of dystonia-associated protein torsinA near the Golgi apparatus in cultured central neurons

2019 ◽  
Author(s):  
Sadahiro Iwabuchi ◽  
Hiroyuki Kawano ◽  
N. Charles Harata

ABSTRACTA single in-frame deletion of a codon for a glutamic acid residue within the TOR1A gene is linked to the autosomal-dominant movement disorder DYT1 dystonia, a condition characterized by involuntary muscle contractions that cause abnormal posture. This gene encodes the protein torsinA, and the functions of both wild-type and mutant (ΔE-torsinA) forms remain poorly understood. Previous studies based on overexpression systems indicated that wild-type torsinA resides mainly in the endoplasmic reticulum but that ΔE-torsinA is localized to the nuclear envelope or intracellular inclusions. This mutation-associated mis-localization has been proposed to underlie at least a part of the pathophysiology of DYT1 dystonia. However, the subcellular localization of torsinA has not been extensively studied when expressed at the endogenous level. Here we report an immunocytochemical analysis of torsinA proteins in cultured mouse neurons from a ΔE-torsinA knock-in model of DYT1 dystonia, where torsinA proteins are not upregulated. In all examined neurons of wild-type, heterozygous and homozygous mice, torsinA signal was found mainly near the Golgi apparatus, and only weakly in the endoplasmic reticulum and nuclear envelope. These results suggest that, in the absence of overexpression, torsinA proteins are localized near the Golgi apparatus and may influence cellular function involving the organelle.

1984 ◽  
Vol 99 (6) ◽  
pp. 2011-2023 ◽  
Author(s):  
J W Wills ◽  
R V Srinivas ◽  
E Hunter

The envelope glycoproteins of Rous sarcoma virus (RSV), gp85 and gp37, are anchored in the membrane by a 27-amino acid, hydrophobic domain that lies adjacent to a 22-amino acid, cytoplasmic domain at the carboxy terminus of gp37. We have altered these cytoplasmic and transmembrane domains by introducing deletion mutations into the molecularly cloned sequences of a proviral env gene. The effects of the mutations on the transport and subcellular localization of the Rous sarcoma virus glycoproteins were examined in monkey (CV-1) cells using an SV40 expression vector. We found, on the one hand, that replacement of the nonconserved region of the cytoplasmic domain with a longer, unrelated sequence of amino acids (mutant C1) did not alter the rate of transport to the Golgi apparatus nor the appearance of the glycoprotein on the cell surface. Larger deletions, extending into the conserved region of the cytoplasmic domain (mutant C2), resulted in a slower rate of transport to the Golgi apparatus, but did not prevent transport to the cell surface. On the other hand, removal of the entire cytoplasmic and transmembrane domains (mutant C3) did block transport and therefore did not result in secretion of the truncated protein. Our results demonstrate that the C3 polypeptide was not transported to the Golgi apparatus, although it apparently remained in a soluble, nonanchored form in the lumen of the rough endoplasmic reticulum; therefore, it appears that this mutant protein lacks a functional sorting signal. Surprisingly, subcellular localization by internal immunofluorescence revealed that the C3 protein (unlike the wild type) did not accumulate on the nuclear membrane but rather in vesicles distributed throughout the cytoplasm. This observation suggests that the wild-type glycoproteins (and perhaps other membrane-bound or secreted proteins) are specifically transported to the nuclear membrane after their biosynthesis elsewhere in the rough endoplasmic reticulum.


1963 ◽  
Vol 18 (12) ◽  
pp. 1092-1097 ◽  
Author(s):  
Lothar Diers

According to the intense activity of the vegetative cell in the germinating pollen grain, the cytoplasm shows a highly organized structure. Concerning the structure the vegetative cell differs strongly from the generative cell. In the vegetative cell the big nucleus shows a very lobed shape. Large invaginations of the cytoplasm into the nucleus can be frequently observed. Series of adjacent sections show that deep and flat vesicles which may often broaden to unusual large cisternae, extend through the vegetative plasm and form by interconnections a highly developed endoplasmic reticulum which is continuous with the nuclear envelope. The leucoplasts contain large starch grains and very few lamellae, in many sections only one lamella is visible. Sometimes, a process of a leucoplast deeply reaches into another leucoplast. In some leucoplasts and mitochondria there are concentric stripes which, according to serial sections, are the margins of invaginations of the cytoplasm or of another organell. In the numerous mitochondria the inner folds have the form of cristae, tubules are not so frequently seen. The edges of the flattened sacs of the Golgi - apparatus expand to vacuoles which seem to separate from the flattened cisternae. Typical for the vegetative plasm are numerous small vacuoles. Relatively large, ringshaped or uniform dark bodies are assumed to be lipid inclusions.


1965 ◽  
Vol 26 (2) ◽  
pp. 523-537 ◽  
Author(s):  
G. Benjamin Bouck

The structural interrelationships among several membrane systems in the cells of brown algae have been examined by electron microscopy. In the brown algae the chloroplasts are surrounded by two envelopes, the outer of which in some cases is continuous with the nuclear envelope. The pyrenoid, when present, protrudes from the chloroplast, is also surrounded by the two chloroplast envelopes, and, in addition, is capped by a third dilated envelope or "pyrenoid sac." The regular apposition of the membranes around the pyrenoid contrasts with their looser appearance over the remainder of the chloroplast. The Golgi apparatus is closely associated with the nuclear envelope in all brown algae examined, but in the Fucales this association may extend to portions of the cytoplasmic endoplasmic reticulum as well. Evidence is presented for the derivation of vesicles, characteristic of those found in the formative region of the Golgi apparatus, from portions of the underlying nuclear envelope. The possibility that a structural channeling system for carbohydrate reserves and secretory precursors may be present in brown algae is considered. Other features of the brown algal cell, such as crystal-containing bodies, the variety of darkly staining vacuoles, centrioles, and mitochondria, are examined briefly, and compared with similar structures in other plant cells.


2009 ◽  
Vol 20 (11) ◽  
pp. 2661-2672 ◽  
Author(s):  
Abigail B. Vander Heyden ◽  
Teresa V. Naismith ◽  
Erik L. Snapp ◽  
Didier Hodzic ◽  
Phyllis I. Hanson

TorsinA (TorA) is an AAA+ ATPase in the endoplasmic reticulum (ER) lumen that is mutated in early onset DYT1 dystonia. TorA is an essential protein in mice and is thought to function in the nuclear envelope (NE) despite localizing throughout the ER. Here, we report that transient interaction of TorA with the ER membrane protein LULL1 targets TorA to the NE. FRAP and Blue Native PAGE indicate that TorA is a stable, slowly diffusing oligomer in either the absence or presence of LULL1. Increasing LULL1 expression redistributes both wild-type and disease-mutant TorA to the NE, while decreasing LULL1 with shRNAs eliminates intrinsic enrichment of disease-mutant TorA in the NE. When concentrated in the NE, TorA displaces the nuclear membrane proteins Sun2, nesprin-2G, and nesprin-3 while leaving nuclear pores and Sun1 unchanged. Wild-type TorA also induces changes in NE membrane structure. Because SUN proteins interact with nesprins to connect nucleus and cytoskeleton, these effects suggest a new role for TorA in modulating complexes that traverse the NE. Importantly, once concentrated in the NE, disease-mutant TorA displaces Sun2 with reduced efficiency and does not change NE membrane structure. Together, our data suggest that LULL1 regulates the distribution and activity of TorA within the ER and NE lumen and reveal functional defects in the mutant protein responsible for DYT1 dystonia.


1979 ◽  
Vol 149 (1) ◽  
pp. 17-26 ◽  
Author(s):  
JWM Van Der Meer ◽  
RHJ Beelen ◽  
DM Fluitsma ◽  
R Van Furth

Monoblasts, promonocytes, and macrophages in in vitro cultures of murine bone marrow were studied ultrastructurally, with special attention to peroxidatic activity. Monoblasts show peroxidatic activity in the rough endoplasmic reticulum and nuclear envelope as well as in the granules. The presence of peroxidatic activity in the Golgi apparatus could not be determined. Promonocytes have peroxidase-positive rough endoplasmic reticulum, Golgi apparatus, nuclear envelope, and granules, as previously reported. During culture, cells are formed with peroxidatic activity similar to that of monocytes or exudate macrophages (positive granules; negative Golgi apparatus, RER, and nuclear envelope); we call these cells early macrophages. In addition, transitional macrophages with both positive granules and positive RER, nuclear envelope, negative Golgi apparatus (as in exudate- resident macrophages in vivo), and mature macrophages with peroxidatic activity only in the RER and nuclear envelope (as in resident macrophages in vivo) were found. A considerable number of cells without detectable peroxidatic activity were also encountered. Our finding that macrophages with the peroxidatic pattern of monocytes (early macrophages), exudate-resident macrophages (transitional macrophages), and resident macrophages (mature macrophages), develop in vitro from proliferating precursor cells deriving from the bone marrow, demonstrates once again that resident macrophages in tissues originate from precursor cells in the bone marrow. Therefore, this conclusion can no longer be challenged on the basis of a cytochemical difference between monocytes and exudate macrophages on the one hand and resident macrophages on the other.


2001 ◽  
Vol 114 (20) ◽  
pp. 3685-3694
Author(s):  
Thomas K. Graves ◽  
Shilpa Patel ◽  
Priscilla S. Dannies ◽  
Patricia M. Hinkle

In some individuals with autosomal dominant isolated growth hormone deficiency, one copy of growth hormone lacks amino acids 32-71 and is severely misfolded. We transfected COS7 cells with either wild-type human growth hormone or Δ32-71 growth hormone and investigated subcellular localization of growth hormone and other proteins. Δ32-71 growth hormone was retained in the endoplasmic reticulum, whereas wild-type hormone accumulated in the Golgi apparatus. When cells transfected with wild-type or Δ32-71 growth hormone were dually stained for growth hormone and the Golgi markers β-COP, membrin or 58K, wild-type growth hormone was colocalized with the Golgi markers, but β-COP, membrin and 58K immunoreactivity was highly dispersed or undetectable in cells expressing Δ32-71 growth hormone. Examination of α-tubulin immunostaining showed that the cytoplasmic microtubular arrangement was normal in cells expressing wild-type growth hormone, but microtubule-organizing centers were absent in nearly all cells expressing Δ32-71 growth hormone. To determine whether Δ32-71 growth hormone would alter trafficking of a plasma membrane protein, we cotransfected the cells with the thyrotropin-releasing hormone (TRH) receptor and either wild-type or Δ32-71 growth hormone. Cells expressing Δ32-71 growth hormone, unlike those expressing wild-type growth hormone, failed to show normal TRH receptor localization or binding. Expression of Δ32-71 growth hormone also disrupted the trafficking of two secretory proteins, prolactin and secreted alkaline phosphatase. Δ32-71 growth hormone only weakly elicited the unfolded protein response as indicated by induction of BiP mRNA. Pharmacological induction of the unfolded protein response partially prevented deletion mutant-induced Golgi fragmentation and partially restored normal TRH receptor trafficking. The ability of some misfolded proteins to block endoplasmic reticulum-to-Golgi traffic may explain their toxic effects on host cells and suggests possible strategies for therapeutic interventions.


1978 ◽  
Vol 26 (5) ◽  
pp. 409-411 ◽  
Author(s):  
G Stöhr ◽  
W Deimann ◽  
H D Fahimi

The cytochemical localization of endogenous peroxidase activity in sinus lining cells of mouse liver has been investigated. Kupffer cells, as identified by their exclusive ability to phagocytize large (0.8 micron) latex particles, exhibited strong peroxidase activity in nuclear envelope and endoplasmic reticulum. In addition, weak to moderate peroxidase activity was found in 57% of all endothelial cells. The enzyme in endothelial cells was also localized in nuclear envelope and endoplasmic reticulum, with a negative reaction in the Golgi apparatus. These observations indicate that peroxidase staining, as a marker for identification of Kupffer cells in mouse liver, is only of limited value and should be used in conjunction with other methods (e.g., latex phagocytosis).


2010 ◽  
Vol 38 (2) ◽  
pp. 452-456 ◽  
Author(s):  
Thomas T. Warner ◽  
Alassandra Granata ◽  
Giampietro Schiavo

DYT1 dystonia is an autosomal dominant movement disorder, characterized by early onset of involuntary sustained muscle contractions. It is caused by a 3-bp deletion in the DYT1 gene, which results in the deletion of a single glutamate residue in the C-terminus of the protein TA (torsinA). TA is a member of the AAA+ (ATPase associated with various cellular activities) family of chaperones with multiple functions in the cell. There is no evidence of neurodegeneration in DYT1 dystonia, which suggests that mutant TA leads to functional neuronal abnormalities, leading to dystonic movements. In recent years, different functional roles have been attributed to TA, including being a component of the cytoskeleton and the NE (nuclear envelope), and involvement in the secretory pathway and SV (synaptic vesicle) machinery. The aim of the present review is to summarize these findings and the different models proposed, which have contributed to our current understanding of the function of TA, and also to discuss the evidence implicating TA in SV function.


2005 ◽  
Vol 168 (6) ◽  
pp. 855-862 ◽  
Author(s):  
Rose E. Goodchild ◽  
William T. Dauer

A glutamic acid deletion (ΔE) in the AAA+ protein torsinA causes DYT1 dystonia. Although the majority of torsinA resides within the endoplasmic reticulum (ER), torsinA binds a substrate in the lumen of the nuclear envelope (NE), and the ΔE mutation enhances this interaction. Using a novel cell-based screen, we identify lamina-associated polypeptide 1 (LAP1) as a torsinA-interacting protein. LAP1 may be a torsinA substrate, as expression of the isolated lumenal domain of LAP1 inhibits the NE localization of “substrate trap” EQ-torsinA and EQ-torsinA coimmunoprecipitates with LAP1 to a greater extent than wild-type torsinA. Furthermore, we identify a novel transmembrane protein, lumenal domain like LAP1 (LULL1), which also appears to interact with torsinA. Interestingly, LULL1 resides in the main ER. Consequently, torsinA interacts directly or indirectly with a novel class of transmembrane proteins that are localized in different subdomains of the ER system, either or both of which may play a role in the pathogenesis of DYT1 dystonia.


1994 ◽  
Vol 302 (3) ◽  
pp. 641-648 ◽  
Author(s):  
R S McLeod ◽  
C Robbins ◽  
A Burns ◽  
Z Yao ◽  
P H Pritchard

Human apolipoprotein (apo) A-I is secreted as a proprotein of 249 amino acids and is processed extracellularly to the mature form (243 amino acids) by removal of a six-residue propeptide segment. We have examined the role of the apoA-I propeptide in intracellular transport and secretion using transfected baby hamster kidney cells that secreted either proapoA-I (from the wild-type cDNA, A-Iwt) or mature-form apoA-I (from A-I delta pro, a cDNA in which the propeptide sequence was deleted). Deletion of the propeptide from the apoA-I sequence did not affect the rate of apoA-I synthesis, nor did it affect the fidelity of proteolytic removal of the prepeptide. However, the propeptide deletion caused mature-form apoA-I to accumulate within the cells as determined by pulse-chase experiments; the intracellular retention times for the mature-form apoA-I in which the propeptide was prematurely removed was three times longer than that of proapoA-I (t1/2 > 3 h compared with approximately 50 min). There was no detectable degradation of either form of newly synthesized apoA-I. Immunofluorescence microscopy revealed that, whereas the proapoA-I was located predominantly in the Golgi apparatus, large quantities of the mature-form apoA-I were detected in the endoplasmic reticulum and very little was in the Golgi apparatus of A-I delta pro-transfected cells. These findings suggest that the propeptide sequence may be involved in the intracellular transport of apoA-I from the endoplasmic reticulum to the Golgi apparatus. We propose that the function of the propeptide sequence is to facilitate efficient transport of apoA-I through the secretory pathway.


Sign in / Sign up

Export Citation Format

Share Document