scholarly journals Inhibition of tumor growth by a novel engineered chimeric toxin that cleaves activated mutant and wild-type RAS

Author(s):  
Vania Vidimar ◽  
Greg L. Beilhartz ◽  
Minyoung Park ◽  
Marco Biancucci ◽  
Matthew B. Kieffer ◽  
...  

SummaryDespite nearly four decades of effort, broad inhibition of oncogenic RAS using small molecule approaches has proven to be a major challenge. Here we describe the development of a novel pan-RAS biologic inhibitor comprised of the RAS-RAP1-specific endopeptidase fused to the protein delivery machinery of diphtheria toxin. We show that this engineered chimeric toxin irreversibly cleaves and inactivates intracellular RAS at low picomolar concentrations terminating downstream signaling in receptor-bearing cells. Further, we demonstrate in vivo target engagement and reduction of tumor burden in three mouse xenograft models driven by either wild-type or mutant RAS. Intracellular delivery of a potent anti-RAS biologic through a receptor-mediated mechanism represents a promising new approach to developing RAS therapeutics against a broad array of cancers.SignificanceRAS oncoproteins have long been considered among the most elusive drug targets in cancer research. At issue is the lack of accessible drug binding sites and the extreme affinity for its GTP substrate. Covalent inhibitors against the KRAS G12C mutant have shown early clinical promise, however, targeting the other oncogenic RAS mutants across three RAS isoforms has proven challenging. Inhibition of activated wild-type RAS in the absence of canonical RAS mutations is also highly desirable in certain tumors. Here, we demonstrate delivery of an extremely potent pan-RAS and RAP1 cleaving enzyme in therapeutic quantities to specific receptor-bearing cells in vitro and in vivo. We aim to advance this approach to engineer the first targeted pan-RAS inhibitor for cancer therapy.One Sentence SummaryEngineered chimeric toxin halts tumor growth in vivo via RAS cleavage

2020 ◽  
Vol 117 (29) ◽  
pp. 16938-16948 ◽  
Author(s):  
Vania Vidimar ◽  
Greg L. Beilhartz ◽  
Minyoung Park ◽  
Marco Biancucci ◽  
Matthew B. Kieffer ◽  
...  

Despite nearly four decades of effort, broad inhibition of oncogenic RAS using small-molecule approaches has proven to be a major challenge. Here we describe the development of a pan-RAS biologic inhibitor composed of the RAS-RAP1–specific endopeptidase fused to the protein delivery machinery of diphtheria toxin. We show that this engineered chimeric toxin irreversibly cleaves and inactivates intracellular RAS at low picomolar concentrations terminating downstream signaling in receptor-bearing cells. Furthermore, we demonstrate in vivo target engagement and reduction of tumor burden in three mouse xenograft models driven by either wild-type or mutantRAS. Intracellular delivery of a potent anti-RAS biologic through a receptor-mediated mechanism represents a promising approach to developing RAS therapeutics against a broad array of cancers.


2019 ◽  
Vol 47 (05) ◽  
pp. 1171-1191 ◽  
Author(s):  
Hong-Wei Gao ◽  
Xiao-Fan Huang ◽  
Tzi-Peng Yang ◽  
Kai-Fu Chang ◽  
Ling-Wen Yeh ◽  
...  

Melanoma, which has a high metastatic capacity and death rate, is a common skin cancer in Western countries. The purpose of this study was to address whether Juniperus communis (JCo) extract is effective in the suppression of melanoma and to elucidate the anticancer mechanisms involved in vitro and in vivo. The antitumor capacities of JCo extract on tumor suppression and toxicity were evaluated and the results demonstrated that the tumor burden was reduced via mediation of cell cycle, reduction of autocrine signaling, and induction of apoptosis. Moreover, JCo extract significantly prolonged the survival rate of the test subjects with only low pathological and physiological toxicity. Additionally, JCo extract also reduced cancer stem cell-related angiogenic and metastatic proteins in the process of tumor elimination. Based on these results, this study suggests that JCo extract suppresses tumor growth and induces apoptosis, and JCo extract may be useful for the prevention of melanoma tumorigenesis.


2020 ◽  
Vol 6 (17) ◽  
pp. eaaw8500
Author(s):  
Hong-Mei Li ◽  
Yan-Ran Bi ◽  
Yang Li ◽  
Rong Fu ◽  
Wen-Cong Lv ◽  
...  

The zinc finger transcription factor Snail is aberrantly activated in many human cancers and associated with poor prognosis. Therefore, targeting Snail is expected to exert therapeutic benefit in patients with cancer. However, Snail has traditionally been considered “undruggable,” and no effective pharmacological inhibitors have been identified. Here, we found a small-molecule compound CYD19 that forms a high-affinity interaction with the evolutionarily conserved arginine-174 pocket of Snail protein. In aggressive cancer cells, CYD19 binds to Snail and thus disrupts Snail’s interaction with CREB-binding protein (CBP)/p300, which consequently impairs CBP/p300-mediated Snail acetylation and then promotes its degradation through the ubiquitin-proteasome pathway. Moreover, CYD19 restores Snail-dependent repression of wild-type p53, thus reducing tumor growth and survival in vitro and in vivo. In addition, CYD19 reverses Snail-mediated epithelial-mesenchymal transition (EMT) and impairs EMT-associated tumor invasion and metastasis. Our findings demonstrate that pharmacologically targeting Snail by CYD19 may exert potent therapeutic effects in patients with cancer.


2020 ◽  
Author(s):  
Hu Han ◽  
Yan Li ◽  
Wan Qin ◽  
Lu Wang ◽  
Han Yin ◽  
...  

AbstractInfectious pathogens contribute to about 20% of the total tumor burden. Fusobacterium nucleatum (Fn) has been associated with the initiation, progression, and therapy resistance in colorectal cancer (CRC). The over-abundance of Fn has been observed in patients with right-sided CRC than in those with left-sided CRC. While the KRAS/NRAS/BRAF wild-type status of the CRC conferred better response to cetuximab in patients with left-sided CRC than with right-sided CRC. However, treatment failure remains the leading cause of tumor relapse and poor clinical outcome in patients with CRC. Here, we have studied the association of Fn to cetuximab resistance. Our functional studies indicate that Fn facilitates resistance of CRC to cetuximab in vitro and in vivo. Moreover, Fn was found to target the PI3K/AKT and JAK/STAT3 pathways, which altered the response to cetuximab therapy. Therefore, assessing the levels and targeting Fn and the associated signaling pathways may allow modulating the treatment regimen and improve prognoses of CRC patients.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Teruo Kusano ◽  
Driss Ehirchiou ◽  
Tomohiro Matsumura ◽  
Veronique Chobaz ◽  
Sonia Nasi ◽  
...  

Abstract Xanthine oxidoreductase has been implicated in cancer. Nonetheless, the role played by its two convertible forms, xanthine dehydrogenase (XDH) and oxidase (XO) during tumorigenesis is not understood. Here we produce XDH-stable and XO-locked knock-in (ki) mice to address this question. After tumor transfer, XO ki mice show strongly increased tumor growth compared to wild type (WT) and XDH ki mice. Hematopoietic XO expression is responsible for this effect. After macrophage depletion, tumor growth is reduced. Adoptive transfer of XO-ki macrophages in WT mice increases tumor growth. In vitro, XO ki macrophages produce higher levels of reactive oxygen species (ROS) responsible for the increased Tregs observed in the tumors. Blocking ROS in vivo slows down tumor growth. Collectively, these results indicate that the balance of XO/XDH plays an important role in immune surveillance of tumor development. Strategies that inhibit the XO form specifically may be valuable in controlling cancer growth.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. e13505-e13505
Author(s):  
Joline Sijing Lim ◽  
Todor Dimitrov ◽  
Kol Jia Yong ◽  
Chong Gao ◽  
Daniel G Tenen ◽  
...  

e13505 Background: Hepatocellular carcinoma (HCC) is the third leading cause of cancer related deaths worldwide, with chemotherapy or targeted therapy such as sorafenib achieving limited success. Recently stem cell factor SALL4 has emerged as a novel oncogene associated with leukemogenesis and is also implicated in many solid tumors. We have observed that SALL4 is not expressed in adult human liver tissues, but expressed in 30-40% of liver cancer, and this is associated with poorer prognosis and overall survival. We further tested whether inhibition of SALL4 function could be used for HCC treatment. Methods: A novel peptide blocking SALL4 function was designed and used to treat HCC lines with or without SALL4 expression. This is followed by evaluation for binding affinity, tumor growth inhibitory activity and mechanism of action. Treated cells were then transplanted in vivo into NOD/SCID mice and monitored for tumor growth. Comparison and/or combination of peptide with sorafenib were also carried out. Further modification of the peptide was done to allow for in vivo administration. Results: The peptide can effectively block SALL4 function. When used to treat HCC cell lines, it showed inhibitory effects in SNU398 cells (SALL4 expression), but not SNU387 cells (non-SALL4 expression). Post-xenotransplant, mice which received cells treated with peptide had slower rate of tumor growth (p=0.028) and lower tumor burden at dissection 26 days post transplant (p=0.048). Searching for its mechanism of action, we discovered that the peptide could affect the PTEN/AKT pathway, which was validated by western blot. When the peptide was combined with sorafenib, decreased cell viability was observed (p=0.03), suggestive of at least an additive effect between the peptide and sorafenib. Modification of peptide with TAT-protein showed similar inhibition of growth in vitro and was tested for further in-vivo usage through intraperitoneal injection. Conclusions: Our proof-of-principle studies have showed that a peptide blocking the function of stem cell factor SALL4 can be used as a novel approach for treating HCC. Combined with sorafenib, it may be able to enhance cell death and potentially lead to better outcomes in HCC patients.


Blood ◽  
2005 ◽  
Vol 105 (9) ◽  
pp. 3538-3541 ◽  
Author(s):  
Waleed F. Khalaf ◽  
Hilary White ◽  
Mary Jo Wenning ◽  
Attilio Orazi ◽  
Reuben Kapur ◽  
...  

AbstractIn vitro studies suggest that Ras activation is necessary for erythroid cell development. However, genetic inactivation of the Ras isoforms H-Ras, N-Ras, and K-Ras in mice reportedly did not affect adult or fetal erythropoiesis, though K-Ras-/- embryos were anemic. Given these discrepancies, we performed a more detailed analysis of fetal erythropoiesis in K-Ras-/- embryos. Day-13.5 K-Ras-/- embryos were pale with a marked reduction of mature erythrocytes in their fetal livers. The frequency and number of both early (erythroid burst-forming unit [BFU-E]) and late erythroid progenitors (erythroid colony-forming unit [CFU-E]) were reduced in K-Ras-/- fetal livers compared with wild-type controls and displayed a delay in terminal erythroid cell maturation. Further, K-Ras-/- hematopoietic progenitors had reduced proliferation in response to erythropoietin and Kit ligand compared with control cells. Thus, these studies identify K-Ras as a unique Ras isoform that is essential for regulating fetal erythropoiesis in vivo.


2011 ◽  
Vol 18 (4) ◽  
pp. 491-503 ◽  
Author(s):  
Qiao Zheng ◽  
Sarah M Dunlap ◽  
Jinling Zhu ◽  
Erinn Downs-Kelly ◽  
Jeremy Rich ◽  
...  

Obesity increases both the risk and mortality associated with many types of cancer including that of the breast. In mice, obesity increases both incidence of spontaneous tumors and burden of transplanted tumors. Our findings identify leptin, an adipose secreted cytokine, in promoting increased mammary tumor burden in obese mice and provide a link between this adipokine and cancer. Using a transplantable tumor that develops spontaneously in the murine mammary tumor virus-Wnt-1 transgenic mice, we show that tumors transplanted into obese leptin receptor (LepRb)-deficient (db/db) mice grow to eight times the volume of tumors transplanted into lean wild-type (WT) mice. However, tumor outgrowth and overall tumor burden is reduced in obese, leptin-deficient (ob/ob) mice. The residual tumors in ob/ob mice contain fewer undifferentiated tumor cells (keratin 6 immunopositive) compared with WT or db/db mice. Furthermore, tumors in ob/ob mice contain fewer cells expressing phosphorylated Akt, a growth promoting kinase activated by the LepRb, compared with WT and db/db mice.In vivolimiting dilution analysis of residual tumors from ob/ob mice indicated reduced tumor initiating activity suggesting fewer cancer stem cells (CSCs). The tumor cell populations reduced by leptin deficiency were identified by fluorescence-activated cell sorting and found to express LepRb. Finally, LepRb expressing tumor cells exhibit stem cell characteristics based on the ability to form tumorspheresin vitroand leptin promotes their survival. These studies provide critical new insight on the role of leptin in tumor growth and implicate LepRb as a CSC target.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1518-1518
Author(s):  
Haruna Naito ◽  
Shinya Kimura ◽  
Yohei Nakaya ◽  
Haruna Naruoka ◽  
Tatsushi Wakayama ◽  
...  

Abstract We have identified a specific dual Bcr-Abl/Lyn inhibitor, NS-187 (elsewhere described as CNS-9), which is 25–55 times more potent than imatinib against wild type Bcr-Abl in vitro. To evaluate the potential of NS-187 as a therapeutic agent, we assessed its in vivo activity. When Balb/c mice were given NS-187 orally at a dose of 30 mg/kg, the pharmacokinetic parameters were as follows: Tmax, 2 h; Cmax, 586 ng/ml; AUC0-∝, 2999 ng•h/ml; T1/2, 1.0 h; and bioavailability value (BA), 33%. The maximal tolerated dose (MTD) of NS-187 in Balb/c or Balb/c-nu/nu mice was 200 mg/kg/day (100 mg/kg, twice daily). To test the effect of NS-187 on in vivo tumor growth, Balb/c-nu/nu mice were injected subcutaneously with Bcr-Abl-positive KU812 cells on Day 0 and given NS-187 or imatinib orally twice a day from Day 7 to Day 17. At 20 mg/kg/day, imatinib inhibited tumor growth slightly, while at 200 mg/kg/day, it inhibited tumor growth almost completely. In contrast, at only 0.2 mg/kg/day NS-187 significantly inhibited tumor growth, while at 20 mg/kg/day it completely inhibited tumor growth without any adverse effects. The body weights of the treated tumor-bearing mice were not significantly different from those of untreated mice, even at a dosage of 200 mg/kg/day NS-187. Thus, NS-187 was at least 10-fold more potent than imatinib in vivo with complete inhibition of tumor growth as the end-point. We also tested the ability of NS-187 to suppress tumor growth in another murine tumor model, namely, Balb/c-nu/nu mice intravenously transplanted with BaF3 cells harboring wild type Bcr-Abl. The mice were treated orally with NS-187 or imatinib for 11 days starting on Day 1. All eight untreated mice and all eight mice treated with 400 mg/kg/day imatinib had died by Day 25 due to leukemic cell expansion, and NS-187 significantly prolonged the survival of the mice in a dose-dependent manner. We next examined the ability of NS-187 to block the in vivo growth of BaF3 cells harboring one of the Abl point-mutants M244V, G250E, Q252H, Y253F, T315I, M351T and H396P in Balb/c-nu/nu mice. These mice were treated with NS-187 or imatinib for 11 days starting on Day 1. NS-187 at 200 mg/kg/day significantly prolonged the survival of mice inoculated with BaF3 cells harboring any of these mutants except T315I compared with untreated or imatinib-treated mice (see Figure for an example). Thus, NS-187 was more potent than imatinib and could override the point-mutation-based imatinib-resistance mechanism in vivo. The efficacy and safety of NS-187 for Ph+ leukemias is expected to be verified by early-phase clinical trials. Figure Figure


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 4087-4087 ◽  
Author(s):  
Liandong Ma ◽  
Baohui Zhao ◽  
Richard Walgren ◽  
Joshua A Clayton ◽  
Wayne D Blosser ◽  
...  

Abstract Abstract 4087 Introduction: The JAK2-V617F mutation is the most common molecular abnormality in the BCR/ABL-negative myeloid proliferative neoplasms (MPNs) and is present in approximately 95% of patients with polycythemia vera (PV) and roughly 60% of patients with either essential thrombocythemia (ET) or primary myelofibrosis (PMF). The JAK2 V617F kinase is constitutively active, oncogenic and recapitulates MPN in murine models. Therefore, mutant JAK2 is a potential therapeutic target for MPNs. Here, we describe the efficacy of the clinical candidate LY2784544; a novel small molecule inhibitor selective for JAK2 V617F mutant, in JAK2 V617F-induced in vitro and in vivo models. Methods: Assessment of the ability of LY2784544 to inhibit the signaling of the V617F mutant or wild type JAK2 was evaluated in Ba/F3 cells expressing V617F or wild type JAK2, whereby the cellular level of phospho-STAT5 (pSTAT5) was measured by a high content imaging (Cellomics) assay. The antiproliferative activity of LY2784544 and its ability to induce apoptosis were examined by Celltiter-Glo Cell Viability and Caspase-Glo 3/7 Apoptosis Assays, respectively. The effect of LY2784544 on JAK3 was investigated in IL-2 stimulated NK-92 (nature killer) cells by measuring the inhibition of JAK3-STAT5 signaling with the Cellomics assay. To examine the in vivo target inhibition, a JAK2 V617F-induced ascites tumor model was established by implanting Ba/F3-JAK2 V617F-GFP cells into the intraperitoneal cavity of severe combined immunodeficiency (SCID) mice. After orally administering LY2784544, the inhibition of pSTAT5 was measured in Ba/F3-JAK2 V617F-GFP ascites tumor cells by fluorescence activated cell sorting (FACS) assay. The anti-tumor efficacy of LY2784544 was investigated in a SCID mouse model of MPN developed by intravenously implanting Ba/F3-JAK2 V617F-GFP cells. After oral treatment for 7 or 14 days, twice daily (BID), tumor burden reduction and the effect on erythroid progenitor cells were determined by measuring the GFP positive tumor cells and CD71/Ter119 positive cells in the spleens with FACS assays, respectively. Results: In the in vitro tests using Ba/F3 cells expressing either wild type or V617F mutant JAK2, LY2784544 potently inhibited the JAK2 V617F-STAT5 signaling at a concentration that was 41-fold lower than that required to inhibit IL-3-activated wild type JAK2-STAT5 signaling (IC50=0.055 μ M for JAK2 V617F vs. 2.26 μ M for WT JAK2). Similarly in the proliferation assay, LY2784544 selectively inhibited the JAK2 V617F-driven cell proliferation (IC50= 0.068 μ M). Inhibition of JAK2 V617F signaling correlated well with the induction of apoptosis (EC50= 0.113 μ M) in Ba/F3 cell model. Consistent with the observed apparent selectivity for the V617F mutant and reduced sensitivity against wild type JAK2, a lower potency was observed with LY2784544 in the IL-3-dependent cell proliferation assay (IC50=1.356 μ M) as well as less effective inhibition of IL-2 dependent JAK3-STAT5 signaling in NK-92 cells (IC50=0.94 μ M). In vivo, LY2784544 effectively inhibited STAT5 phosphorylation in Ba/F3-JAK2 V617F-GFP ascites tumor cells with a Threshold Effective Dose 50 (TED50) of 12.7 mg/kg. Consistent with this effective inhibition of JAK2V617F, LY2784544 also significantly reduced Ba/F3-JAK2 V617F-GFP tumor burden in the JAK2 V617F-induced MPN model with a TED50 of 13.7 mg/kg after oral treatment (BID) for 14 days, indicating that the efficacy of LY2784544 is mediated by pharmacological inhibition of JAK2 V16F-STAT5 pathway. Furthermore, LY2784544 selectively reduced Ba/F3-JAK2 V617F-GFP tumor cells with no effect on CD71/Ter119 positive erythroid progenitors in spleens of SCID mice after oral treatment (BID) for seven days. Conclusions: The in vitro data suggest that constitutively active JAK2 V617F is more sensitive to LY2784544 than cytokine-activated wild type JAK2. Consistent with this observation, in MPN disease model testing, LY2784544 selectively reduces JAK2 V617F tumor cell burden with no effect on erythroid progenitor cells. These findings suggest that as a JAK2 V617F selective targeted therapy, LY2784544 has the potential to induce apoptosis in JAK2 V617F malignant clones while potentially minimizing unintended effects on the normal hematopoietic progenitor cells. These results helped to support the advancement of LY2784544 into an ongoing phase I trial in the MPNs (I3X-MC-JHTA, NCT01134120). Disclosures: Ma: Eli Lilly and Company: Employment. Zhao:Eli Lilly and Company: Employment. Walgren:Eli Lilly and Company: Employment. Clayton:Eli Lilly and Company: Employment. Blosser:Eli Lilly and Company: Employment. Burkholder:Eli Lilly and Company: Employment. Smith:Eli Lilly and Company: Employment.


Sign in / Sign up

Export Citation Format

Share Document