scholarly journals Simplified geometric representations of protein structures identify complementary interaction interfaces

Author(s):  
Caitlyn L. McCafferty ◽  
Edward M. Marcotte ◽  
David W. Taylor

ABSTRACTProtein-protein interactions are critical to protein function, but three-dimensional (3D) arrangements of interacting proteins have proven hard to predict, even given the identities and 3D structures of the interacting partners. Specifically, identifying the relevant pairwise interaction surfaces remains difficult, often relying on shape complementarity with molecular docking while accounting for molecular motions to optimize rigid 3D translations and rotations. However, such approaches can be computationally expensive, and faster, less accurate approximations may prove useful for large-scale prediction and assembly of 3D structures of multi-protein complexes. We asked if a reduced representation of protein geometry retains enough information about molecular properties to predict pairwise protein interaction interfaces that are tolerant of limited structural rearrangements. Here, we describe a cuboid transformation of 3D protein accessible surfaces on which molecular properties such as charge, hydrophobicity, and mutation rate can be easily mapped, implemented in the MorphProt package. Pairs of surfaces are compared to rapidly assess partner-specific potential surface complementarity. On two available benchmarks of 85 overall known protein complexes, we observed F1 scores (a weighted combination of precision and recall) of 19-34% at correctly identifying protein interaction surfaces, comparable to more computationally intensive 3D docking methods in the annual Critical Assessment of PRedicted Interactions. Furthermore, we examined the effect of molecular motion through normal mode simulation on a benchmark receptor-ligand pair and observed no marked loss of predictive accuracy for distortions of up to 6 Å RMSD. Thus, a cuboid transformation of protein surfaces retains considerable information about surface complementarity, offers enhanced speed of comparison relative to more complex geometric representations, and exhibits tolerance to conformational changes.

2019 ◽  
Vol 116 (38) ◽  
pp. 18962-18970 ◽  
Author(s):  
Sushant Kumar ◽  
Declan Clarke ◽  
Mark B. Gerstein

Large-scale exome sequencing of tumors has enabled the identification of cancer drivers using recurrence-based approaches. Some of these methods also employ 3D protein structures to identify mutational hotspots in cancer-associated genes. In determining such mutational clusters in structures, existing approaches overlook protein dynamics, despite its essential role in protein function. We present a framework to identify cancer driver genes using a dynamics-based search of mutational hotspot communities. Mutations are mapped to protein structures, which are partitioned into distinct residue communities. These communities are identified in a framework where residue–residue contact edges are weighted by correlated motions (as inferred by dynamics-based models). We then search for signals of positive selection among these residue communities to identify putative driver genes, while applying our method to the TCGA (The Cancer Genome Atlas) PanCancer Atlas missense mutation catalog. Overall, we predict 1 or more mutational hotspots within the resolved structures of proteins encoded by 434 genes. These genes were enriched among biological processes associated with tumor progression. Additionally, a comparison between our approach and existing cancer hotspot detection methods using structural data suggests that including protein dynamics significantly increases the sensitivity of driver detection.


2021 ◽  
Author(s):  
Sandeep Kaur ◽  
Neblina Sikta ◽  
Andrea Schafferhans ◽  
Nicola Bordin ◽  
Mark J. Cowley ◽  
...  

AbstractMotivationVariant analysis is a core task in bioinformatics that requires integrating data from many sources. This process can be helped by using 3D structures of proteins, which can provide a spatial context that can provide insight into how variants affect function. Many available tools can help with mapping variants onto structures; but each has specific restrictions, with the result that many researchers fail to benefit from valuable insights that could be gained from structural data.ResultsTo address this, we have created a streamlined system for incorporating 3D structures into variant analysis. Variants can be easily specified via URLs that are easily readable and writable, and use the notation recommended by the Human Genome Variation Society (HGVS). For example, ‘https://aquaria.app/SARS-CoV-2/S/?N501Y’ specifies the N501Y variant of SARS-CoV-2 S protein. In addition to mapping variants onto structures, our system provides summary information from multiple external resources, including COSMIC, CATH-FunVar, and PredictProtein. Furthermore, our system identifies and summarizes structures containing the variant, as well as the variant-position. Our system supports essentially any mutation for any well-studied protein, and uses all available structural data — including models inferred via very remote homology — integrated into a system that is fast and simple to use. By giving researchers easy, streamlined access to a wealth of structural information during variant analysis, our system will help in revealing novel insights into the molecular mechanisms underlying protein function in health and disease.AvailabilityOur resource is freely available at the project home page (https://aquaria.app). After peer review, the code will be openly available via a GPL version 2 license at https://github.com/ODonoghueLab/Aquaria. PSSH2, the database of sequence-to-structure alignments, is also freely available for download at https://zenodo.org/record/[email protected] informationNone.


2021 ◽  
Author(s):  
Sankar Basu ◽  
Simon S. Assaf ◽  
Fabian Teheux ◽  
Marianne Rooman ◽  
Fabrizio Pucci

AbstractUnderstanding the role of stability strengths and weaknesses in proteins is a key objective for rationalizing their dynamical and functional properties such as conformational changes, catalytic activity, and protein-protein and protein-ligand interactions. We present BRANEart, a new, fast and accurate method to evaluate the per-residue contributions to the overall stability of membrane proteins. It is based on an extended set of recently introduced statistical potentials derived from membrane protein structures, which better describe the stability properties of this class of proteins than standard potentials derived from globular proteins. We defined a per-residue membrane propensity index from combinations of these potentials, which can be used to identify residues which strongly contribute to the stability of the transmembrane region or which would, on the contrary, be more stable in extramembrane regions, or vice versa. Large-scale application to membrane and globular proteins sets and application to tests cases show excellent agreement with experimental data. BRANEart thus appears as a useful instrument to analyze in detail the overall stability properties of a target membrane protein, to position it relative to the lipid bilayer, and to rationally modify its biophysical characteristics and function. BRANEart can be freely accessed from http://babylone.3bio.ulb.ac.be/BRANEart.


2021 ◽  
Author(s):  
Jimin Pei ◽  
Jing Zhang ◽  
Qian Cong

AbstractRecent development of deep-learning methods has led to a breakthrough in the prediction accuracy of 3-dimensional protein structures. Extending these methods to protein pairs is expected to allow large-scale detection of protein-protein interactions and modeling protein complexes at the proteome level. We applied RoseTTAFold and AlphaFold2, two of the latest deep-learning methods for structure predictions, to analyze coevolution of human proteins residing in mitochondria, an organelle of vital importance in many cellular processes including energy production, metabolism, cell death, and antiviral response. Variations in mitochondrial proteins have been linked to a plethora of human diseases and genetic conditions. RoseTTAFold, with high computational speed, was used to predict the coevolution of about 95% of mitochondrial protein pairs. Top-ranked pairs were further subject to the modeling of the complex structures by AlphaFold2, which also produced contact probability with high precision and in many cases consistent with RoseTTAFold. Most of the top ranked pairs with high contact probability were supported by known protein-protein interactions and/or similarities to experimental structural complexes. For high-scoring pairs without experimental complex structures, our coevolution analyses and structural models shed light on the details of their interfaces, including CHCHD4-AIFM1, MTERF3-TRUB2, FMC1-ATPAF2, ECSIT-NDUFAF1 and COQ7-COQ9, among others. We also identified novel PPIs (PYURF-NDUFAF5, LYRM1-MTRF1L and COA8-COX10) for several proteins without experimentally characterized interaction partners, leading to predictions of their molecular functions and the biological processes they are involved in.


2015 ◽  
Vol 1 (9) ◽  
pp. e1501188 ◽  
Author(s):  
Andrew E. Brereton ◽  
P. Andrew Karplus

During protein folding and as part of some conformational changes that regulate protein function, the polypeptide chain must traverse high-energy barriers that separate the commonly adopted low-energy conformations. How distortions in peptide geometry allow these barrier-crossing transitions is a fundamental open question. One such important transition involves the movement of a non-glycine residue between the left side of the Ramachandran plot (that is, ϕ < 0°) and the right side (that is, ϕ > 0°). We report that high-energy conformations with ϕ ~ 0°, normally expected to occur only as fleeting transition states, are stably trapped in certain highly resolved native protein structures and that an analysis of these residues provides a detailed, experimentally derived map of the bond angle distortions taking place along the transition path. This unanticipated information lays to rest any uncertainty about whether such transitions are possible and how they occur, and in doing so lays a firm foundation for theoretical studies to better understand the transitions between basins that have been little studied but are integrally involved in protein folding and function. Also, the context of one such residue shows that even a designed highly stable protein can harbor substantial unfavorable interactions.


2020 ◽  
Author(s):  
Felipe V. da Fonseca ◽  
Romildo O. Souza Júnior ◽  
Marília V. A. de Almeida ◽  
Thiago D. Soares ◽  
Diego A. A. Morais ◽  
...  

ABSTRACTMotivationA useful approach to evaluate protein structure and quickly visualize crucial physicochemical interactions related to protein function is to construct Residue Interactions Networks (RINs). By using this application of graphs theory, the amino acid residues constitute the nodes, and the edges represent their interactions with other structural elements. Although several tools that construct RINs are available, many of them do not compare RINs from distinct protein structures. This comparison can give valuable insights into the understanding of conformational changes and the effects of amino acid substitutions in protein structure and function. With that in mind, we present CoRINs (Comparator of Residue Interaction Networks), a software tool that extensively compares RINs. The program has an accessible and user-friendly web interface, which summarizes the differences in several network parameters using interactive plots and tables. As a usage example of CoRINs, we compared RINs from conformers of two cancer-associated proteins.AvailabilityThe program is available at https://github.com/LasisUFRN/CoRINs.


2018 ◽  
Author(s):  
Cen Wan ◽  
Domenico Cozzetto ◽  
Rui Fa ◽  
David T. Jones

Protein-protein interaction network data provides valuable information that infers direct links between genes and their biological roles. This information brings a fundamental hypothesis for protein function prediction that interacting proteins tend to have similar functions. With the help of recently-developed network embedding feature generation methods and deep maxout neural networks, it is possible to extract functional representations that encode direct links between protein-protein interactions information and protein function. Our novel method, STRING2GO, successfully adopts deep maxout neural networks to learn functional representations simultaneously encoding both protein-protein interactions and functional predictive information. The experimental results show that STRING2GO outperforms other network embedding-based prediction methods and one benchmark method adopted in a recent large scale protein function prediction competition.


2019 ◽  
Author(s):  
P Gainza ◽  
F Sverrisson ◽  
F Monti ◽  
E Rodolà ◽  
MM Bronstein ◽  
...  

AbstractPredicting interactions between proteins and other biomolecules purely based on structure is an unsolved problem in biology. A high-level description of protein structure, the molecular surface, displays patterns of chemical and geometric features thatfingerprinta protein’s modes of interactions with other biomolecules. We hypothesize that proteins performing similar interactions may share common fingerprints, independent of their evolutionary history. Fingerprints may be difficult to grasp by visual analysis but could be learned from large-scale datasets. We presentMaSIF, a conceptual framework based on a new geometric deep learning method to capture fingerprints that are important for specific biomolecular interactions. We showcase MaSIF with three prediction challenges: protein pocket-ligand prediction, protein-protein interaction site prediction, and ultrafast scanning of protein surfaces for prediction of protein-protein complexes. We anticipate that our conceptual framework will lead to improvements in our understanding of protein function and design.


2012 ◽  
Vol 40 (3) ◽  
pp. 475-491 ◽  
Author(s):  
Tina Perica ◽  
Joseph A. Marsh ◽  
Filipa L. Sousa ◽  
Eviatar Natan ◽  
Lucy J. Colwell ◽  
...  

All proteins require physical interactions with other proteins in order to perform their functions. Most of them oligomerize into homomers, and a vast majority of these homomers interact with other proteins, at least part of the time, forming transient or obligate heteromers. In the present paper, we review the structural, biophysical and evolutionary aspects of these protein interactions. We discuss how protein function and stability benefit from oligomerization, as well as evolutionary pathways by which oligomers emerge, mostly from the perspective of homomers. Finally, we emphasize the specificities of heteromeric complexes and their structure and evolution. We also discuss two analytical approaches increasingly being used to study protein structures as well as their interactions. First, we review the use of the biological networks and graph theory for analysis of protein interactions and structure. Secondly, we discuss recent advances in techniques for detecting correlated mutations, with the emphasis on their role in identifying pathways of allosteric communication.


Sign in / Sign up

Export Citation Format

Share Document