scholarly journals A Genetic Screen Links the Disease-Associated Nab2 RNA-Binding Protein to the Planar Cell Polarity Pathway in Drosophila melanogaster

2019 ◽  
Author(s):  
Wei-Hsuan Lee ◽  
Edwin Corgiat ◽  
J. Christopher Rounds ◽  
Zenyth Shepherd ◽  
Anita H. Corbett ◽  
...  

ABSTRACTMutations in the gene encoding the ubiquitously expressed RNA-binding protein ZC3H14 result in a non-syndromic form of autosomal recessive intellectual disability. Studies in Drosophila have defined roles for the ZC3H14 ortholog, Nab2 (aka Drosophila Nab2 or dNab2), in axon guidance and memory due in part to interaction with a second RNA-binding protein, the fly Fragile X homolog Fmr1, and coregulation of shared Nab2-Fmr1 target mRNAs. Despite these advances, neurodevelopmental pathways regulated by Nab2 remain poorly defined. Structural defects in Nab2 null brains resemble defects observed upon disruption of the planar cell polarity (PCP) pathway, which regulates planar orientation of static and motile cells. A kinked bristle phenotype in surviving Nab2 mutant adults additionally suggests a defect in F-actin polymerization and bundling, which is also a PCP-regulated processes. To test for Nab2-PCP genetic interactions, a collection of PCP loss-of-function alleles was screened for modification of a rough-eye phenotype produced by Nab2 overexpression in the eye (GMR-Nab2) and subsequently for modification of Nab2 null phenotypes. Multiple PCP alleles dominantly modify GMR-Nab2 eye roughening and a subset of these alleles also rescue low survival and thoracic bristle kinking in Nab2 zygotic nulls. Moreover, alleles of two X-linked PCP factors, dishevelled (dsh) and β amyloid protein precursor-like (Appl), rescue GMR-Nab2 eye roughening in male progeny derived from hemizygous dsh or Appl mutant fathers, suggesting an additional effect inherited through the male germline. These findings demonstrate a consistent pattern of Nab2-PCP genetic interactions that suggest molecular links between Nab2 and the PCP pathway in the developing eye, wing and germline.

2020 ◽  
Vol 10 (10) ◽  
pp. 3575-3583 ◽  
Author(s):  
Wei-Hsuan Lee ◽  
Edwin Corgiat ◽  
J. Christopher Rounds ◽  
Zenyth Shepherd ◽  
Anita H. Corbett ◽  
...  

Mutations in the gene encoding the ubiquitously expressed RNA-binding protein ZC3H14 result in a non-syndromic form of autosomal recessive intellectual disability in humans. Studies in Drosophila have defined roles for the ZC3H14 ortholog, Nab2 (aka Drosophila Nab2 or dNab2), in axon guidance and memory due in part to interaction with a second RNA-binding protein, the fly Fragile X homolog Fmr1, and coregulation of shared Nab2-Fmr1 target mRNAs. Despite these advances, neurodevelopmental mechanisms that underlie defective axonogenesis in Nab2 mutants remain undefined. Nab2 null phenotypes in the brain mushroom bodies (MBs) resemble defects caused by alleles that disrupt the planar cell polarity (PCP) pathway, which regulates planar orientation of static and motile cells via a non-canonical arm of the Wnt/Wg pathway. A kinked bristle phenotype in surviving Nab2 mutant adults additionally suggests a defect in F-actin polymerization and bundling, a PCP-regulated processes. To test for Nab2-PCP genetic interactions, a collection of PCP mutant alleles was screened for modification of a rough-eye phenotype produced by Nab2 overexpression in the eye (GMR>Nab2) and, subsequently, for modification of a viability defect among Nab2 nulls. Multiple PCP alleles dominantly modify GMR>Nab2 eye roughening and a subset rescue low survival and thoracic bristle kinking in Nab2 zygotic nulls. Collectively, these genetic interactions identify the PCP pathway as a potential target of the Nab2 RNA-binding protein in developing eye and wing tissues and suggest that altered PCP signaling could contribute to neurological defects that result from loss of Drosophila Nab2 or its vertebrate ortholog ZC3H14.


Cell Reports ◽  
2017 ◽  
Vol 20 (6) ◽  
pp. 1372-1384 ◽  
Author(s):  
Rick S. Bienkowski ◽  
Ayan Banerjee ◽  
J. Christopher Rounds ◽  
Jennifer Rha ◽  
Omotola F. Omotade ◽  
...  

2019 ◽  
Vol 116 (37) ◽  
pp. 18619-18628 ◽  
Author(s):  
Jaewon Song ◽  
Sanghyun Lee ◽  
Dong-Yeon Cho ◽  
Sungwon Lee ◽  
Hyewon Kim ◽  
...  

RNA represents a pivotal component of host–pathogen interactions. Human cytomegalovirus (HCMV) infection causes extensive alteration in host RNA metabolism, but the functional relationship between the virus and cellular RNA processing remains largely unknown. Through loss-of-function screening, we show that HCMV requires multiple RNA-processing machineries for efficient viral lytic production. In particular, the cellular RNA-binding protein Roquin, whose expression is actively stimulated by HCMV, plays an essential role in inhibiting the innate immune response. Transcriptome profiling revealed Roquin-dependent global down-regulation of proinflammatory cytokines and antiviral genes in HCMV-infected cells. Furthermore, using cross-linking immunoprecipitation (CLIP)-sequencing (seq), we identified IFN regulatory factor 1 (IRF1), a master transcriptional activator of immune responses, as a Roquin target gene. Roquin reduces IRF1 expression by directly binding to its mRNA, thereby enabling suppression of a variety of antiviral genes. This study demonstrates how HCMV exploits host RNA-binding protein to prevent a cellular antiviral response and offers mechanistic insight into the potential development of CMV therapeutics.


2020 ◽  
Vol 219 (7) ◽  
Author(s):  
Therese M. Gerbich ◽  
Grace A. McLaughlin ◽  
Katelyn Cassidy ◽  
Scott Gerber ◽  
David Adalsteinsson ◽  
...  

Biomolecular condensation is a way of organizing cytosol in which proteins and nucleic acids coassemble into compartments. In the multinucleate filamentous fungus Ashbya gossypii, the RNA-binding protein Whi3 regulates the cell cycle and cell polarity through forming macromolecular structures that behave like condensates. Whi3 has distinct spatial localizations and mRNA targets, making it a powerful model for how, when, and where specific identities are established for condensates. We identified residues on Whi3 that are differentially phosphorylated under specific conditions and generated mutants that ablate this regulation. This yielded separation of function alleles that were functional for either cell polarity or nuclear cycling but not both. This study shows that phosphorylation of individual residues on molecules in biomolecular condensates can provide specificity that gives rise to distinct functional identities in the same cell.


2020 ◽  
Author(s):  
Xiao Tan ◽  
Wen-Bin Chen ◽  
Dao-Jun Lv ◽  
Tao-Wei Yang ◽  
Kai-Hui Wu ◽  
...  

Abstract Background: The interaction between LncRNA and RNA-binding protein (RBPs) plays an essential role in the regulation over the malignant progression of tumors. Previous studies on the mechanism of SNHG1, an emerging lncRNA, have primarily focused on the competing endogenous RNA (ceRNA) mechanism. Nevertheless, the underlying mechanism between SNHG1 and RBPs in tumors remains to be explored, especially in prostate cancer (PCa).Methods:SNHG1 expression profiles in PCa were determined through the analysis of TCGA data and tissue microarray at the mRNA level. Gain- and loss-of-function experiments were performed to investigate the biological role of SNHG1 in PCa initiation and progression. RNA-seq, immunoblotting, RNA pull-down and RNA immunoprecipitation analyses were utilized to clarify potential pathways with which SNHG1 might be involved. Finally, rescue experiments were carried out to further confirm this mechanism.Results: We found that SNHG1 was dominantly expressed in the nuclei of PCa cells and significantly upregulated in PCa patients. The higher expression level of SNHG1 was dramatically correlated with tumor metastasis and patient survival. Functionally, overexpression of SNHG1 in PCa cells induced epithelial–mesenchymal transition (EMT), accompanied by down-regulation of the epithelial marker, E-cadherin, and up-regulation of the mesenchymal marker, vimentin. Increased proliferation and migration, as well as accelerated xenograft tumor growth, were observed in SNHG1-overexpressing PCa cells, while opposite effects were achieved in SNHG1-silenced cells. Mechanistically, SNHG1 competitively interacted with hnRNPL to impair the translation of protein E-cadherin, thus activating the effect of SNHG1 on the EMT pathway, eventually promoting the metastasis of PCa. Conclusion: Our findings demonstrate that SNHG1 is a positive regulator of EMT activation through the SNHG1-hnRNPL-CDH1 axis. SNHG1 may serve as a novel potential therapeutic target for PCa.


2021 ◽  
Author(s):  
Sandra Diaz-Garcia ◽  
Vivian I. Ko ◽  
Sonia Vazquez-Sanchez ◽  
Ruth Chia ◽  
Olubankole Aladesuyi Arogundade ◽  
...  

Amyotrophic lateral sclerosis is a progressive fatal neurodegenerative disease caused by loss of motor neurons and characterized neuropathologically in almost all cases by nuclear depletion and cytoplasmic aggregation of TDP-43, a nuclear RNA binding protein (RBP). We identified ELAVL3 as one of the most downregulated genes in our transcriptome profiles of laser captured microdissection of motor neurons from sporadic ALS nervous systems and the top dysregulated RBPs. Neuropathological characterizations showed ELAVL3 nuclear depletion in a great percentage of remnant motor neurons, sometimes accompanied by cytoplasmic accumulations. These abnormalities were common in sporadic cases with and without intermediate expansions in ATXN2 and familial cases carrying mutations in C9orf72 and SOD1. Depletion of ELAVL3 occurred at both the RNA and protein levels and a short protein isoform was identified but it is not related to a TDP-43-dependent cryptic exon in intron 3. Strikingly, ELAVL3 abnormalities were more frequent than TDP-43 abnormalities and occurred in motor neurons still with normal nuclear TDP-43 present, but all neurons with abnormal TDP-43 also had abnormal ELAVL3. In a neuron-like cell culture model using SH-SY5Y cells, ELAVL3 mislocalization occurred weeks before TDP-43 abnormalities were seen. We interrogated genetic databases but did not identify association of ELAVL3 genetic structure associated with ALS. Taken together, these findings suggest that ELAVL3 is an important RBP in ALS pathogenesis acquired early and the neuropathological data suggest it is involved by loss of function rather than cytoplasmic toxicity.


2020 ◽  
Author(s):  
Edwin B. Corgiat ◽  
Sara M. List ◽  
J. Christopher Rounds ◽  
Anita H. Corbett ◽  
Kenneth H. Moberg

AbstractThe human ZC3H14 gene, which encodes a ubiquitously expressed polyadenosine zinc finger RNA binding protein, is mutated in an inherited form of autosomal recessive, non-syndromic intellectual disability. To gain insight into ZC3H14 neurological functions, we previously developed a Drosophila melanogaster model of ZC3H14 loss by deleting the fly ortholog, Nab2. Studies in this invertebrate model reveal that Nab2 controls final patterns of neuron projection within fully developed adult brains. Here, we examine earlier pupal stages and define roles for Nab2 in controlling the dynamic growth of axons into the developing brain mushroom bodies (MBs), which support olfactory learning and memory, and in regulating abundance of a small fraction of the total brain proteome, a portion of which is rescued by overexpression of Nab2 specifically in brain neurons. The group of Nab2-regulated brain proteins, identified by quantitative proteomic analysis, includes the microtubule binding protein Futsch, the neuronal Ig-family transmembrane protein Turtle, the glial:neuron adhesion protein Contactin, the RacGAP Tumbleweed, and the planar cell polarity factor Van Gogh, which collectively link Nab2 to a the processes of brain morphogenesis, neuroblast proliferation, circadian sleep/wake cycles, and synaptic development. Overall, these data indicate that Nab2 controls abundance of a subset of brain proteins during the active process of wiring the pupal brain mushroom body, and thus provide a window into potentially conserved functions of the Nab2/ZC3H14 RNA binding proteins in neurodevelopment and function.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Shengtan Wang ◽  
Zaihong Li ◽  
Genhai Zhu ◽  
Lan Hong ◽  
Chunyan Hu ◽  
...  

Abstract Background Circular RNAs (circRNAs) are increasingly recognized as important regulators in cancer including ovarian cancer (OC). This work focuses on the effects of circ_0000745 on the OC development of and molecules involved. Methods Expression of circ_0000745 in collected OC tissues and the acquired OC cell lines was examined by RT-qPCR. The stability of circ_0000745 in cells was examined by RNase R treatment. The target transcripts interacted with circ_0000745 were predicted using bioinformatic systems. Gain- and loss-of-function studies of circ_0000745, microRNA (miR)-3187-3p and erb-b2 receptor tyrosine kinase 4 (ERBB4) were conducted to determine their functions on proliferation, migration, invasion and stem cell property of OC cells. Results Circ_0000745 and ERBB4 were abundantly expressed while miR-3187-3p was poorly expressed in OC tissues and cells. Circ_0000745 sequestered miR-3187-3p and blocked its repressive effect on ERBB4. Downregulation of circ_0000745 reduced proliferation, aggressiveness, epithelial-mesenchymal transition, and stemness of SK-OV-3 cells, but this reduction was blocked upon miR-3187-3p inhibition or ERBB4 upregulation. By contrast, artificial induction of circ_0000745 upregulation, miR-3187-3p upregulation and ERBB4 downregulation led to inverse trends in ES-2 cells. ERBB4 promoted the phosphorylation of the PI3K/AKT signaling pathway. An RNA binding protein IGF2BP2 was found to circ_0000745 bind to and promote its expression and stability. Conclusion This study demonstrated that circ_0000745 upregulated by IGF2BP2 promotes aggressiveness and stemness of OC cells through a miR-3187-3p/ERBB4/PI3K/AKT axis. Circ_0000745 may serve as a promising target for OC treatment.


Author(s):  
Wei Hong ◽  
Jin-Hong Chen ◽  
Hong-jiao Ma ◽  
Li-Li ◽  
Xiao-Cui Li

AbstractFragile X-related protein 1 (FXR1) is an RNA-binding protein that can regulate specific mRNA decay in cells. Our previous study showed that FXR1 expression was significantly decreased in trophoblasts from patients with unexplained recurrent spontaneous abortion (RSA); however, the role of FXR1 in trophoblast function during early placenta development has not been fully elucidated. In this study, we found that knockdown of FXR1 using siRNA effectively inhibited the migration of HTR-8 cells and extravillous trophoblast (EVT) outgrowth in an ex vivo extravillous explant culture model. Furthermore, through analysis of a panel of cytokines, we found that the GDF-15 protein was upregulated after knockdown of FXR1 in HTR-8/SVneo cells. This was further confirmed by western blotting and immunofluorescence in HTR-8/SVneo cells and an extravillous explant. Our data also showed that FXR1 expression was downregulated and GDF-15 was upregulated in chorionic villous tissues from RSA patients compared with those from healthy controls (HCs). Further, immunohistochemistry showed a strong expression of GDF-15 in chorionic villous tissue in the RSA group, which was mainly distributed in villous trophoblasts (CTBs) and syncytiotrophoblasts (STBs). Moreover, knockdown of GDF-15 enhanced the migration of HTR-8 cells, while overexpression of GDF-15 using plasmid or treatment with recombinant human GDF-15 protein inhibited trophoblast migration. Importantly, RNA-binding protein immunoprecipitation showed that FXR1 directly bound to the 3′-UTR of GDF-15 mRNA to promote GDF-15 mRNA decay. Together, our data provide new insight into the function of FXR1 in human placenta via regulation of GDF-15 expression in trophoblasts and suggest a possible pathological process involved in RSA.


Sign in / Sign up

Export Citation Format

Share Document