scholarly journals Alignment of single-cell RNA-seq samples without over-correction using kernel density matching

Author(s):  
Mengjie Chen ◽  
Qi Zhan ◽  
Zepeng Mu ◽  
Lili Wang ◽  
Zhaohui Zheng ◽  
...  

AbstractSingle-cell RNA sequencing (scRNA-seq) technology is poised to replace bulk cell RNA sequencing for most biological and medical applications as it allows users to measure gene expression levels in a cell-type-specific manner. However, data produced by scRNA-seq often exhibit batch effects that can be specific to a cell-type, to a sample, or to an experiment, which prevent integration or comparisons across multiple experiments. Here, we present Dmatch, a method that leverages an external expression atlas of human primary cells and kernel density matching to align multiple scRNA-seq experiments for downstream biological analysis. Dmatch facilitates alignment of scRNA-seq datasets with cell-types that may overlap only partially, and thus allows integration of multiple distinct scRNA-seq experiments to extract biological insights. In simulation, Dmatch compares favorably to other alignment methods, both in terms of reducing sample-specific clustering, and in terms of avoiding over-correction. When applied to scRNA-seq data collected from clinical samples in a healthy individual and five autoimmune disease patients, Dmatch enabled cell-type-specific differential gene expression comparisons across biopsy sites and disease conditions, and uncovered a shared population of pro-inflammatory monocytes across biopsy sites in RA patients. We further show that Dmatch increases the number of eQTLs mapped from population scRNA-seq data. Dmatch is fast, scalable, and improves the utility of scRNA-seq for several important applications. Dmatch is freely available online (https://qzhan321.github.io/dmatch/).

Author(s):  
Jiebiao Wang ◽  
Kathryn Roeder ◽  
Bernie Devlin

AbstractWhen assessed over a large number of samples, bulk RNA sequencing provides reliable data for gene expression at the tissue level. Single-cell RNA sequencing (scRNA-seq) deepens those analyses by evaluating gene expression at the cellular level. Both data types lend insights into disease etiology. With current technologies, however, scRNA-seq data are known to be noisy. Moreover, constrained by costs, scRNA-seq data are typically generated from a relatively small number of subjects, which limits their utility for some analyses, such as identification of gene expression quantitative trait loci (eQTLs). To address these issues while maintaining the unique advantages of each data type, we develop a Bayesian method (bMIND) to integrate bulk and scRNA-seq data. With a prior derived from scRNA-seq data, we propose to estimate sample-level cell-type-specific (CTS) expression from bulk expression data. The CTS expression enables large-scale sample-level downstream analyses, such as detecting CTS differentially expressed genes (DEGs) and eQTLs. Through simulations, we demonstrate that bMIND improves the accuracy of sample-level CTS expression estimates and power to discover CTS-DEGs when compared to existing methods. To further our understanding of two complex phenotypes, autism spectrum disorder and Alzheimer’s disease, we apply bMIND to gene expression data of relevant brain tissue to identify CTS-DEGs. Our results complement findings for CTS-DEGs obtained from snRNA-seq studies, replicating certain DEGs in specific cell types while nominating other novel genes in those cell types. Finally, we calculate CTS-eQTLs for eleven brain regions by analyzing GTEx V8 data, creating a new resource for biological insights.


PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0205883 ◽  
Author(s):  
Joseph C. Mays ◽  
Michael C. Kelly ◽  
Steven L. Coon ◽  
Lynne Holtzclaw ◽  
Martin F. Rath ◽  
...  

Author(s):  
Jun Cheng ◽  
Wenduo Gu ◽  
Ting Lan ◽  
Jiacheng Deng ◽  
Zhichao Ni ◽  
...  

Abstract Aims Hypertension is a major risk factor for cardiovascular diseases. However, vascular remodelling, a hallmark of hypertension, has not been systematically characterized yet. We described systematic vascular remodelling, especially the artery type- and cell type-specific changes, in hypertension using spontaneously hypertensive rats (SHRs). Methods and results Single-cell RNA sequencing was used to depict the cell atlas of mesenteric artery (MA) and aortic artery (AA) from SHRs. More than 20 000 cells were included in the analysis. The number of immune cells more than doubled in aortic aorta in SHRs compared to Wistar Kyoto controls, whereas an expansion of MA mesenchymal stromal cells (MSCs) was observed in SHRs. Comparison of corresponding artery types and cell types identified in integrated datasets unravels dysregulated genes specific for artery types and cell types. Intersection of dysregulated genes with curated gene sets including cytokines, growth factors, extracellular matrix (ECM), receptors, etc. revealed vascular remodelling events involving cell–cell interaction and ECM re-organization. Particularly, AA remodelling encompasses upregulated cytokine genes in smooth muscle cells, endothelial cells, and especially MSCs, whereas in MA, change of genes involving the contractile machinery and downregulation of ECM-related genes were more prominent. Macrophages and T cells within the aorta demonstrated significant dysregulation of cellular interaction with vascular cells. Conclusion Our findings provide the first cell landscape of resistant and conductive arteries in hypertensive animal models. Moreover, it also offers a systematic characterization of the dysregulated gene profiles with unbiased, artery type-specific and cell type-specific manners during hypertensive vascular remodelling.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Ana J. Chucair-Elliott ◽  
Sarah R. Ocañas ◽  
David R. Stanford ◽  
Victor A. Ansere ◽  
Kyla B. Buettner ◽  
...  

AbstractEpigenetic regulation of gene expression occurs in a cell type-specific manner. Current cell-type specific neuroepigenetic studies rely on cell sorting methods that can alter cell phenotype and introduce potential confounds. Here we demonstrate and validate a Nuclear Tagging and Translating Ribosome Affinity Purification (NuTRAP) approach for temporally controlled labeling and isolation of ribosomes and nuclei, and thus RNA and DNA, from specific central nervous system cell types. Analysis of gene expression and DNA modifications in astrocytes or microglia from the same animal demonstrates differential usage of DNA methylation and hydroxymethylation in CpG and non-CpG contexts that corresponds to cell type-specific gene expression. Application of this approach in LPS treated mice uncovers microglia-specific transcriptome and epigenome changes in inflammatory pathways that cannot be detected with tissue-level analysis. The NuTRAP model and the validation approaches presented can be applied to any brain cell type for which a cell type-specific cre is available.


2019 ◽  
Author(s):  
Alexandra Grubman ◽  
Gabriel Chew ◽  
John F. Ouyang ◽  
Guizhi Sun ◽  
Xin Yi Choo ◽  
...  

AbstractAlzheimer’s disease (AD) is a heterogeneous disease that is largely dependent on the complex cellular microenvironment in the brain. This complexity impedes our understanding of how individual cell types contribute to disease progression and outcome. To characterize the molecular and functional cell diversity in the human AD brain we utilized single nuclei RNA- seq in AD and control patient brains in order to map the landscape of cellular heterogeneity in AD. We detail gene expression changes at the level of cells and cell subclusters, highlighting specific cellular contributions to global gene expression patterns between control and Alzheimer’s patient brains. We observed distinct cellular regulation of APOE which was repressed in oligodendrocyte progenitor cells (OPCs) and astrocyte AD subclusters, and highly enriched in a microglial AD subcluster. In addition, oligodendrocyte and microglia AD subclusters show discordant expression of APOE. Integration of transcription factor regulatory modules with downstream GWAS gene targets revealed subcluster-specific control of AD cell fate transitions. For example, this analysis uncovered that astrocyte diversity in AD was under the control of transcription factor EB (TFEB), a master regulator of lysosomal function and which initiated a regulatory cascade containing multiple AD GWAS genes. These results establish functional links between specific cellular sub-populations in AD, and provide new insights into the coordinated control of AD GWAS genes and their cell-type specific contribution to disease susceptibility. Finally, we created an interactive reference web resource which will facilitate brain and AD researchers to explore the molecular architecture of subtype and AD-specific cell identity, molecular and functional diversity at the single cell level.HighlightsWe generated the first human single cell transcriptome in AD patient brainsOur study unveiled 9 clusters of cell-type specific and common gene expression patterns between control and AD brains, including clusters of genes that present properties of different cell types (i.e. astrocytes and oligodendrocytes)Our analyses also uncovered functionally specialized sub-cellular clusters: 5 microglial clusters, 8 astrocyte clusters, 6 neuronal clusters, 6 oligodendrocyte clusters, 4 OPC and 2 endothelial clusters, each enriched for specific ontological gene categoriesOur analyses found manifold AD GWAS genes specifically associated with one cell-type, and sets of AD GWAS genes co-ordinately and differentially regulated between different brain cell-types in AD sub-cellular clustersWe mapped the regulatory landscape driving transcriptional changes in AD brain, and identified transcription factor networks which we predict to control cell fate transitions between control and AD sub-cellular clustersFinally, we provide an interactive web-resource that allows the user to further visualise and interrogate our dataset.Data resource web interface:http://adsn.ddnetbio.com


2021 ◽  
Author(s):  
Jianbo Li ◽  
Ligang Wang ◽  
Dawei Yu ◽  
Junfeng Hao ◽  
Longchao Zhang ◽  
...  

Thoracolumbar vertebra (TLV) and rib primordium (RP) development is a common evolutionary feature across vertebrates although whole-organism analysis of TLV and RP gene expression dynamics has been lacking. Here we investigated the single-cell transcriptomic landscape of thoracic vertebra (TV), lumbar vertebra (LV), and RP cells from a pig embryo at 27 days post-fertilization (dpf) and identified six cell types with distinct gene-expression signatures. In-depth dissection of the gene-expression dynamics and RNA velocity revealed a coupled process of osteogenesis and angiogenesis during TLV and rib development. Further analysis of cell-type-specific and strand-specific expression uncovered the extremely high levels of HOXA10 3'-UTR sequence specific to osteoblast of LV cells, which may function as anti-HOXA10-antisense by counteracting the HOXA10-antisense effect to determine TLV transition. Thus, this work provides a valuable resource for understanding embryonic osteogenesis and angiogenesis underlying vertebrate TLV and RP development at the cell-type-specific resolution, which serves as a comprehensive view on the transcriptional profile of animal embryo development.


2018 ◽  
Author(s):  
Ken Jean-Baptiste ◽  
José L. McFaline-Figueroa ◽  
Cristina M. Alexandre ◽  
Michael W. Dorrity ◽  
Lauren Saunders ◽  
...  

ABSTRACTSingle-cell RNA-seq can yield high-resolution cell-type-specific expression signatures that reveal new cell types and the developmental trajectories of cell lineages. Here, we apply this approach toA. thalianaroot cells to capture gene expression in 3,121 root cells. We analyze these data with Monocle 3, which orders single cell transcriptomes in an unsupervised manner and uses machine learning to reconstruct single-cell developmental trajectories along pseudotime. We identify hundreds of genes with cell-type-specific expression, with pseudotime analysis of several cell lineages revealing both known and novel genes that are expressed along a developmental trajectory. We identify transcription factor motifs that are enriched in early and late cells, together with the corresponding candidate transcription factors that likely drive the observed expression patterns. We assess and interpret changes in total RNA expression along developmental trajectories and show that trajectory branch points mark developmental decisions. Finally, by applying heat stress to whole seedlings, we address the longstanding question of possible heterogeneity among cell types in the response to an abiotic stress. Although the response of canonical heat shock genes dominates expression across cell types, subtle but significant differences in other genes can be detected among cell types. Taken together, our results demonstrate that single-cell transcriptomics holds promise for studying plant development and plant physiology with unprecedented resolution.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiuying Li ◽  
Guillaume Noell ◽  
Tracy Tabib ◽  
Alyssa D. Gregory ◽  
Humberto E. Trejo Bittar ◽  
...  

Abstract Background Whole lung tissue transcriptomic profiling studies in chronic obstructive pulmonary disease (COPD) have led to the identification of several genes associated with the severity of airflow limitation and/or the presence of emphysema, however, the cell types driving these gene expression signatures remain unidentified. Methods To determine cell specific transcriptomic changes in severe COPD, we conducted single-cell RNA sequencing (scRNA seq) on n = 29,961 cells from the peripheral lung parenchymal tissue of nonsmoking subjects without underlying lung disease (n = 3) and patients with severe COPD (n = 3). The cell type composition and cell specific gene expression signature was assessed. Gene set enrichment analysis (GSEA) was used to identify the specific cell types contributing to the previously reported transcriptomic signatures. Results T-distributed stochastic neighbor embedding and clustering of scRNA seq data revealed a total of 17 distinct populations. Among them, the populations with more differentially expressed genes in cases vs. controls (log fold change >|0.4| and FDR = 0.05) were: monocytes (n = 1499); macrophages (n = 868) and ciliated epithelial cells (n = 590), respectively. Using GSEA, we found that only ciliated and cytotoxic T cells manifested a trend towards enrichment of the previously reported 127 regional emphysema gene signatures (normalized enrichment score [NES] = 1.28 and = 1.33, FDR = 0.085 and = 0.092 respectively). Among the significantly altered genes present in ciliated epithelial cells of the COPD lungs, QKI and IGFBP5 protein levels were also found to be altered in the COPD lungs. Conclusions scRNA seq is useful for identifying transcriptional changes and possibly individual protein levels that may contribute to the development of emphysema in a cell-type specific manner.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yafei Lyu ◽  
Randy Zauhar ◽  
Nicholas Dana ◽  
Christianne E. Strang ◽  
Jian Hu ◽  
...  

AbstractAge‐related macular degeneration (AMD) is a blinding eye disease with no unifying theme for its etiology. We used single-cell RNA sequencing to analyze the transcriptomes of ~ 93,000 cells from the macula and peripheral retina from two adult human donors and bulk RNA sequencing from fifteen adult human donors with and without AMD. Analysis of our single-cell data identified 267 cell-type-specific genes. Comparison of macula and peripheral retinal regions found no cell-type differences but did identify 50 differentially expressed genes (DEGs) with about 1/3 expressed in cones. Integration of our single-cell data with bulk RNA sequencing data from normal and AMD donors showed compositional changes more pronounced in macula in rods, microglia, endothelium, Müller glia, and astrocytes in the transition from normal to advanced AMD. KEGG pathway analysis of our normal vs. advanced AMD eyes identified enrichment in complement and coagulation pathways, antigen presentation, tissue remodeling, and signaling pathways including PI3K-Akt, NOD-like, Toll-like, and Rap1. These results showcase the use of single-cell RNA sequencing to infer cell-type compositional and cell-type-specific gene expression changes in intact bulk tissue and provide a foundation for investigating molecular mechanisms of retinal disease that lead to new therapeutic targets.


2020 ◽  
Author(s):  
Jiaxin Fan ◽  
Xuran Wang ◽  
Rui Xiao ◽  
Mingyao Li

AbstractAllelic expression imbalance (AEI), quantified by the relative expression of two alleles of a gene in a diploid organism, can help explain phenotypic variations among individuals. Traditional methods detect AEI using bulk RNA sequencing (RNA-seq) data, a data type that averages out cell-to-cell heterogeneity in gene expression across cell types. Since the patterns of AEI may vary across different cell types, it is desirable to study AEI in a cell-type-specific manner. Although this can be achieved by single-cell RNA sequencing (scRNA-seq), it requires full-length transcript to be sequenced in single cells of a large number of individuals, which are still cost prohibitive to generate. To overcome this limitation and utilize the vast amount of existing disease relevant bulk tissue RNA-seq data, we developed BSCET, which enables the characterization of cell-type-specific AEI in bulk RNA-seq data by integrating cell type composition information inferred from a small set of scRNA-seq samples, possibly obtained from an external dataset. By modeling covariate effect, BSCET can also detect genes whose cell-type-specific AEI are associated with clinical factors. Through extensive benchmark evaluations, we show that BSCET correctly detected genes with cell-type-specific AEI and differential AEI between healthy and diseased samples using bulk RNA-seq data. BSCET also uncovered cell-type-specific AEIs that were missed in bulk data analysis when the directions of AEI are opposite in different cell types. We further applied BSCET to two pancreatic islet bulk RNA-seq datasets, and detected genes showing cell-type-specific AEI that are related to the progression of type 2 diabetes. Since bulk RNA-seq data are easily accessible, BSCET provided a convenient tool to integrate information from scRNA-seq data to gain insight on AEI with cell type resolution. Results from such analysis will advance our understanding of cell type contributions in human diseases.Author SummaryDetection of allelic expression imbalance (AEI), a phenomenon where the two alleles of a gene differ in their expression magnitude, is a key step towards the understanding of phenotypic variations among individuals. Existing methods detect AEI use bulk RNA sequencing (RNA-seq) data and ignore AEI variations among different cell types. Although single-cell RNA sequencing (scRNA-seq) has enabled the characterization of cell-to-cell heterogeneity in gene expression, the high costs have limited its application in AEI analysis. To overcome this limitation, we developed BSCET to characterize cell-type-specific AEI using the widely available bulk RNA-seq data by integrating cell-type composition information inferred from scRNA-seq samples. Since the degree of AEI may vary with disease phenotypes, we further extended BSCET to detect genes whose cell-type-specific AEIs are associated with clinical factors. Through extensive benchmark evaluations and analyses of two pancreatic islet bulk RNA-seq datasets, we demonstrated BSCET’s ability to refine bulk-level AEI to cell-type resolution, and to identify genes whose cell-type-specific AEIs are associated with the progression of type 2 diabetes. With the vast amount of easily accessible bulk RNA-seq data, we believe BSCET will be a valuable tool for elucidating cell type contributions in human diseases.


Sign in / Sign up

Export Citation Format

Share Document