scholarly journals Cryo-EM structures reveal two distinct conformational states in a picornavirus cell entry intermediate

Author(s):  
Pranav N.M. Shah ◽  
David J. Filman ◽  
Krishanthi S. Karunatilaka ◽  
Emma L. Hesketh ◽  
Elisabetta Groppelli ◽  
...  

ABSTRACTThe virions of enteroviruses such as poliovirus undergo a global conformational change after binding to the cellular receptor, characterized by a 4% expansion, and opening of holes at the two and quasi-three-fold symmetry axes of the capsid. The resultant particle is called a 135S particle or A-particle and is thought to be on the pathway to a productive infection. Previously published studies have concluded that the membrane interactive peptides, namely VP4 and the N-terminus of VP1, are irreversibly externalized in the 135S particle. However, using established protocols to produce the 135S particle, and single particle cryo-electron microscopy methods, we have identified at least two unique states that we call the early and late 135S particle. Surprisingly, only in the “late” 135S particles have detectable levels of the VP1 N-terminus trapped outside the capsid. Moreover, we observe a distinct density inside the capsid that can be accounted for by VP4 that remains associated with the genome. Taken together our results conclusively demonstrate that the 135S particle is not a unique conformation, but rather a family of conformations that could exist simultaneously.AUTHOR SUMMARYNonenveloped viruses need to provide mechanisms that allow their genomes to be delivered across membrane. This process remains poorly understood. For enterovirus such as poliovirus, genome delivery involves a program of conformational changes that include expansion of the particle and externalization of two normal internal peptides, VP4 and the VP1 N-terminus, which then insert into the cell membrane, triggering endocytosis and the creation of pores that facilitate the transfer of the viral RNA genome across the endosomal membrane. This manuscript describes five high-resolution cryo-EM structures of altered poliovirus particles that represent a number of intermediates along this pathway. The structures reveal several surprising findings, including the discovery of a new intermediate that is expanded but has not yet externalized the membrane interactive peptides, the clear identification of a unique exit site VP1 N-terminus, the demonstration that the externalized VP1 N-terminus partitions between two different sites in a temperature-dependent fashion, direct visualization of an amphipathic helix at the N-terminus of VP1 in an ideal position for interaction with cellular membranes, and the observation that a significant portion of VP4 remains inside the particle and accounts for a feature that had been previously ascribed to part of the viral RNA. These findings represent significant additions to our understanding of the cell entry process of an important class of human pathogens.

TBEV-particles are assembled in an immature, noninfectious form in the endoplasmic reticulum by the envelopment of the viral core (containing the viral RNA) by a lipid membrane associated with two viral proteins, prM and E. Immature particles are transported through the cellular exocytic pathway and conformational changes induced by acidic pH in the trans-Golgi network allow the proteolytic cleavage of prM by furin, a cellular protease, resulting in the release of mature and infectious TBE-virions. The E protein controls cell entry by mediating attachment to as yet ill-defined receptors as well as by low-pH-triggered fusion of the viral and endosomal membrane after uptake by receptor-mediated endocytosis. Because of its key functions in cell entry, the E protein is the primary target of virus neutralizing antibodies, which inhibit these functions by different mechanisms. Although all flavivirus E proteins have a similar overall structure, divergence at the amino acid sequence level is up to 60 percent (e.g. between TBE and dengue viruses), and therefore cross-neutralization as well as (some degree of) cross-protection are limited to relatively closely related flaviviruses, such as those constituting the tick-borne encephalitis serocomplex.


Author(s):  
Franz-Xaver Heinz ◽  
Karin Stiasny

TBEV-particles are assembled in an immature, noninfectious form in the endoplasmic reticulum by the envelopment of the viral core (containing the viral RNA) by a lipid membrane associated with two viral proteins, prM and E. Immature particles are transported through the cellular exocytic pathway and conformational changes induced by acidic pH in the trans-Golgi network allow the proteolytic cleavage of prM by furin, a cellular protease, resulting in the release of mature and infectious TBE-virions. The E protein controls cell entry by mediating attachment to as yet ill-defined receptors as well as by low-pH-triggered fusion of the viral and endosomal membrane after uptake by receptor-mediated endocytosis. Because of its key functions in cell entry, the E protein is the primary target of virus neutralizing antibodies, which inhibit these functions by different mechanisms. Although all flavivirus E proteins have a similar overall structure, divergence at the amino acid sequence level is up to 60 percent (e.g. between TBE and dengue viruses), and therefore cross-neutralization as well as (some degree of) cross-protection are limited to relatively closely related flaviviruses, such as those constituting the tick-borne encephalitis serocomplex.


2000 ◽  
Vol 74 (3) ◽  
pp. 1342-1354 ◽  
Author(s):  
David M. Belnap ◽  
David J. Filman ◽  
Benes L. Trus ◽  
Naiqian Cheng ◽  
Frank P. Booy ◽  
...  

ABSTRACT Upon interacting with its receptor, poliovirus undergoes conformational changes that are implicated in cell entry, including the externalization of the viral protein VP4 and the N terminus of VP1. We have determined the structures of native virions and of two putative cell entry intermediates, the 135S and 80S particles, at ∼22-Å resolution by cryo-electron microscopy. The 135S and 80S particles are both ∼4% larger than the virion. Pseudoatomic models were constructed by adjusting the beta-barrel domains of the three capsid proteins VP1, VP2, and VP3 from their known positions in the virion to fit the 135S and 80S reconstructions. Domain movements of up to 9 Å were detected, analogous to the shifting of tectonic plates. These movements create gaps between adjacent subunits. The gaps at the sites where VP1, VP2, and VP3 subunits meet are plausible candidates for the emergence of VP4 and the N terminus of VP1. The implications of these observations are discussed for models in which the externalized components form a transmembrane pore through which viral RNA enters the infected cell.


Author(s):  
Franz-Xaver Heinz ◽  
Karin Stiasny

• TBEV-particles are assembled in an immature, noninfectious form in the endoplasmic reticulum by the envelopment of the viral core (containing the viral RNA) by a lipid membrane associated with two viral proteins, prM and E. • Immature particles are transported through the cellular exocytic pathway and conformational changes induced by acidic pH in the trans-Golgi network allow the proteolytic cleavage of prM by furin, a cellular protease, resulting in the release of mature and infectious TBE-virions. • The E protein controls cell entry by mediating attachment to as yet ill-defined receptors as well as by low-pH-triggered fusion of the viral and endosomal membrane after uptake by receptor-mediated endocytosis. • Because of its key functions in cell entry, the E protein is the primary target of virus neutralizing antibodies, which inhibit these functions by different mechanisms. • Although all flavivirus E proteins have a similar overall structure, divergence at the amino acid sequence level is up to 60 percent (e.g. between TBE and dengue viruses), and therefore cross-neutralization as well as (some degree of) cross-protection are limited to relatively closely related flaviviruses, such as those constituting the tick-borne encephalitis serocomplex.


2005 ◽  
Vol 79 (12) ◽  
pp. 7745-7755 ◽  
Author(s):  
Doryen Bubeck ◽  
David J. Filman ◽  
Naiqian Cheng ◽  
Alasdair C. Steven ◽  
James M. Hogle ◽  
...  

ABSTRACT Poliovirus provides a well-characterized system for understanding how nonenveloped viruses enter and infect cells. Upon binding its receptor, poliovirus undergoes an irreversible conformational change to the 135S cell entry intermediate. This transition involves shifts of the capsid protein β barrels, accompanied by the externalization of VP4 and the N terminus of VP1. Both polypeptides associate with membranes and are postulated to facilitate entry by forming a translocation pore for the viral RNA. We have calculated cryo-electron microscopic reconstructions of 135S particles that permit accurate placement of the β barrels, loops, and terminal extensions of the capsid proteins. The reconstructions and resulting models indicate that each N terminus of VP1 exits the capsid though an opening in the interface between VP1 and VP3 at the base of the canyon that surrounds the fivefold axis. Comparison with reconstructions of 135S particles in which the first 31 residues of VP1 were proteolytically removed revealed that the externalized N terminus is located near the tips of propeller-like features surrounding the threefold axes rather than at the fivefold axes, as had been proposed in previous models. These observations have forced a reexamination of current models for the role of the 135S particle in transmembrane pore formation and suggest testable alternatives.


1996 ◽  
Vol 75 (03) ◽  
pp. 515-519 ◽  
Author(s):  
Mark J Post ◽  
Anke N de Graaf-Bos ◽  
George Posthuma ◽  
Philip G de Groot ◽  
Jan J Sixma ◽  
...  

Summary Purpose. Thermal angioplasty alters the thrombogenicity of the arterial wall. In previous studies, platelet adhesion was found to increase after heating human subendothelium to 55° C and decrease after heating to 90° C. In the present electron microscopic study, the mechanism of this temperature-dependent platelet adhesion to the heated arterial wall is elucidated by investigating temperature-dependent conformational changes of von Willebrand factor (vWF) and collagen types I and III and the binding of vWF to heated collagen. Methods. Purified vWF and/or collagen was applied to electron microscopic grids and heated by floating on a salt-solution of 37° C, 55° C or 90° C for 15 s. After incubation with a polyclonal antibody against vWF and incubation with protein A/gold, the grids were examined by electron microscopy. Results. At 37° C, vWF was coiled. At 55° C, vWF unfolded, whereas heating at 90° C caused a reduction in antigenicity. Collagen fibers heated to 37° C were 60.3 ± 3.1 nm wide. Heating to 55° C resulted in the unwinding of the fibers, increasing the width to 87.5 ± 8.2 nm (p < 0.01). Heating to 90° C resulted in denatured fibers with an enlarged width of 85.1 ± 6.1 nm (p < 0.05). Heating of collagen to 55° C resulted in an increased vWF binding as compared to collagen heated to 37° C or to 90° C. Incubation of collagen with vWF, prior to heating, resulted in a vWF binding after heating to 55° C that was similar to the 37° C binding and a decreased binding after 90° C. Conclusions. After 55° C heating, the von Willebrand factor molecule unfolds and collagen types I and III exhibit an increased adhesiveness for von Willebrand factor. Heating to 90° C denatures von Willebrand factor and collagen. The conformation changes of von Willebrand factor and its altered binding to collagen type I and III may explain the increased and decreased platelet adhesion to subendothelium after 55° C and 90° C heating, respectively.


Author(s):  
Lev Levintov ◽  
Harish Vashisth

Ribonucleic acid (RNA) molecules are known to undergo conformational changes in response to various environmental stimuli including temperature, pH, and ligands. In particular, viral RNA molecules are a key example...


2020 ◽  
Author(s):  
Stephanie Gummersheimer ◽  
Pranav Danthi

ABSTRACTThe capsids of mammalian reovirus contain two concentric protein shells, the core and the outer capsid. The outer capsid is comprised of µ1-σ3 heterohexamers which surround the core. The core is comprised of λ1 decamers held in place by σ2. After entry into the endosome, σ3 is proteolytically degraded and µ1 is cleaved and exposed to form ISVPs. ISVPs undergo further conformational changes to form ISVP*s, resulting in the release of µ1 peptides which facilitate the penetration of the endosomal membrane to release transcriptionally active core particles into the cytoplasm. Previous work has identified regions or specific residues within reovirus outer capsid that impact the efficiency of cell entry. We examined the functions of the core proteins λ1 and σ2. We generated a reovirus T3D reassortant that carries strain T1L derived σ2 and λ1 proteins (T3D/T1L L3S2). This virus displays a lower ISVP stability and therefore converts to ISVP*s more readily. To identify the basis for lability of T3D/T1L L3S2, we screened for hyper-stable mutants of T3D/T1L L3S2 and identified three point mutations in µ1 that stabilize ISVPs. Two of these mutations are located in the C-terminal ϕ region of µ1, which has not previously been implicated in controlling ISVP stability. Independent from compromised ISVP stability, we also found that T3D/T1L L3S2 launches replication more efficiently and produces higher yields in infected cells. In addition to identifying a new role for the core proteins in disassembly events, these data highlight that core proteins may influence multiple stages of infection.IMPORTANCEProtein shells of viruses (capsids) have evolved to undergo specific changes to ensure the timely delivery of genetic material to host cells. The 2-layer capsid of reovirus provides a model system to study the interactions between capsid proteins and the changes they undergo during entry. We tested a virus in which the core proteins were derived from a different strain than the outer capsid. We found that this mismatched virus was less stable and completed conformational changes required for entry prematurely. Capsid stability was restored by introduction of specific changes to the outer capsid, indicating that an optimal fit between inner and outer shells maintains capsid function. Separate from this property, mismatch between these protein layers also impacted the capacity of virus to initiate infection and produce progeny. This study reveals new insights into the roles of capsid proteins and their multiple functions during viral replication.


Author(s):  
Matthew J. Szucs ◽  
Parker J. Nichols ◽  
Rachel A. Jones ◽  
Quentin Vicens ◽  
Jeffrey S. Kieft

ABSTRACTViruses have developed innovative strategies to exploit the cellular machinery and overcome the host antiviral defenses, often using specifically structured RNA elements. Examples are found in flaviviruses; during flaviviral infection, pathogenic subgenomic flaviviral RNAs (sfRNAs) accumulate in the cell. These sfRNAs are formed when a host cell 5’ to 3’ exoribonuclease degrades the viral genomic RNA but is blocked by an exoribonuclease resistant RNA structure (xrRNA) located in the viral genome’s 3’untranslated region (UTR). Although known to exist in several Flaviviridae genera the full distribution and diversity of xRNAs in this virus family was unknown. Using the recent high-resolution structure of an xrRNA from the divergent flavivirus Tamana bat virus (TABV) as a reference, we used bioinformatic searches to identify xrRNA in the Pegivirus, Pestivirus, and Hepacivirus genera. We biochemically and structurally characterized several examples, determining that they are genuine xrRNAs with a conserved fold. These new xrRNAs look superficially similar to the previously described xrRNAs but possess structural differences making them distinct from previous classes of xrRNAs. Our findings thus require adjustments of previous xrRNA classification schemes and expand on the previously known distribution of the xrRNA in Flaviviridae, indicating their widespread distribution and illustrating their importance.IMPORTANCEThe Flaviviridae comprise one of the largest families of positive sense single stranded (+ssRNA) and it is divided into the Flavivirus, Pestivirus, Pegivirus, and Hepacivirus genera. The genus Flavivirus contains many medically relevant viruses such as Zika Virus, Dengue Virus, and Powassan Virus. In these, a part of the virus’s RNA twists up into a very special three-dimensional shape called an xrRNA that blocks the ability of the cell to “chew up” the viral RNA. Hence, part of the virus’ RNA remains intact, and this protected part is important for viral infection. This was known to occur in Flaviviruses but whether it existed in the other members of the family was not known. In this study, we not only identified a new subclass of xrRNA found in Flavivirus but also in the remaining three genera. The fact that this process of viral RNA maturation exists throughout the entire Flaviviridae family makes it clear that this is an important but underappreciated part of the infection strategy of these diverse human pathogens.


2019 ◽  
Author(s):  
Minjoo Kim ◽  
Nicholas J. Sisco ◽  
Jacob K. Hilton ◽  
Camila M. Montano ◽  
Manuel A. Castro ◽  
...  

AbstractSensing and responding to temperature is crucial in biology. The TRPV1 ion channel is a well-studied heat-sensing receptor that is also activated by vanilloid compounds including capsaicin. Despite significant interest, the molecular underpinnings of thermosensing have remained elusive. The TRPV1 S1-S4 membrane domain couples chemical ligand binding to the pore domain during channel gating. However, the role of the S1-S4 domain in thermosensing is unclear. Evaluation of the isolated human TRPV1 S1-S4 domain by solution NMR, Far-UV CD, and intrinsic fluorescence shows that this domain undergoes a non-denaturing temperature-dependent transition with a high thermosensitivity. Further NMR characterization of the temperature-dependent conformational changes suggests the contribution of the S1-S4 domain to thermosensing shares features with known coupling mechanisms between this domain with ligand and pH activation. Taken together, this study shows that the TRPV1 S1-S4 domain contributes to TRPV1 temperature-dependent activation.


Sign in / Sign up

Export Citation Format

Share Document