scholarly journals Using visual encounter data to improve capture-recapture abundance estimates

2020 ◽  
Author(s):  
Maxwell B. Joseph ◽  
Roland A. Knapp

AbstractCapture-recapture studies are widely used in ecology to estimate population sizes and demographic rates. In some capture-recapture studies, individuals may be visually encountered but not identified. For example, if individual identification is only possible upon capture and individuals escape capture, visual encounters can result in failed captures where individual identities are unknown. In such cases, the data consist of capture histories with known individual identities, and counts of failed captures for individuals with unknown identities. These failed captures are ignored in traditional capture-recapture analyses that require known individual identities. Here we show that if animals can be encountered at most once per sampling occasion, failed captures provide lower bounds on population size that can increase the precision of abundance estimates. Analytical results and simulations indicate that visual encounter data improve abundance estimates when capture probabilities are low, and when there are few repeat surveys. We present a hierarchical Bayesian approach for integrating failed captures and auxiliary encounter data in statistical capture-recapture models. This approach can be integrated with existing capture-recapture models, and may prove particularly useful for hard to capture species in data-limited settings.

2009 ◽  
Vol 57 (4) ◽  
pp. 340 ◽  
Author(s):  
Raymond L. Tremblay ◽  
Maria-Eglée Perez ◽  
Matthew Larcombe ◽  
Andrew Brown ◽  
Joe Quarmby ◽  
...  

Dormancy is common in many terrestrial orchids in southern Australia and other temperate environments. The difficulty for conservation and management when considering dormancy is ascertaining whether non-emergent plants are dormant or dead. Here we use a multi-state capture–recapture method, undertaken over several seasons, to determine the likelihood of a plant becoming dormant or dying following its annual emergent period and evaluate the frequency of the length of dormancy. We assess the transition probabilities from time series of varying lengths for the following nine terrestrial orchids in the genus Caladenia: C. amoena, C. argocalla, C. clavigera, C. elegans, C. graniticola, C. macroclavia, C. oenochila, C. rosella and C. valida from Victoria, South Australia and Western Australia. We used a Bayesian approach for estimating survivorship, dormancy and the likelihood of death from capture–recapture data. Considering all species together, the probability of surviving from one year to the next was ~86%, whereas the likelihood of observing an individual above ground in two consecutive years was ~74%. All species showed dormancy of predominantly 1 year, whereas dormancy of three or more years was extremely rare (<2%). The results have practical implications for conservation, in that (1) population sizes of Caladenia species are more easily estimated by being able to distinguish the likelihood of an unseen individual being dormant or dead, (2) population dynamics of individuals can be evaluated by using a 1–3-year dormancy period and (3) survey effort is not wasted on monitoring individuals that have not emerged for many years.


2020 ◽  
Vol 18 (1) ◽  
pp. 2-23
Author(s):  
Ross M. Gosky ◽  
Joel Sanqui

Capture-Recapture models are useful in estimating unknown population sizes. A common modeling challenge for closed population models involves modeling unequal animal catchability in each capture period, referred to as animal heterogeneity. Inference about population size N is dependent on the assumed distribution of animal capture probabilities in the population, and that different models can fit a data set equally well but provide contradictory inferences about N. Three common Bayesian Capture-Recapture heterogeneity models are studied with simulated data to study the prevalence of contradictory inferences is in different population sizes with relatively low capture probabilities, specifically at different numbers of capture periods in the study.


The Condor ◽  
2000 ◽  
Vol 102 (2) ◽  
pp. 385-391 ◽  
Author(s):  
Frank F. Rivera-MilÁn ◽  
Myrna VÁzquez

Abstract We conducted a capture-recapture study of Zenaida Doves (Zenaida aurita) in three neighboring dairy farms in eastcentral Puerto Rico during 1984–1997. During 46 sampling periods, mean survival rate per sampling period was 0.77 (range = 0.1–1.0), mean recruitment was 911 individuals (range = 182–5,124), and mean population size was 1,569 individuals (range = 233–7,354). Survival increased during 1984–1991 and decreased during 1992–1997. Recruitment did not show a trend, but population size increased during 1984–1997. Rate of increase was a curvilinear decreasing function of population size. A demographic model with a fixed mortality rate stabilized at 1,350 individuals. When mortality rate was defined as a normal random variable, mean population size was 1,421 individuals, and there was a 0.95 probability of observing population sizes from 467 to 2,375 individuals. The size of the Zenaida Dove population varied widely over time, but periods of high recruitment rapidly offset periods of low survival in the dairy farms.


2005 ◽  
Vol 62 (10) ◽  
pp. 2399-2408 ◽  
Author(s):  
Michael K Young ◽  
Paula M Guenther-Gloss ◽  
Ashley D Ficke

Assessing viability of stream populations of cutthroat trout (Oncorhynchus clarkii) and identifying streams suitable for establishing populations are priorities in the western United States, and a model was recently developed to predict translocation success (as defined by an index of population size) of two subspecies based on mean July water temperature, pool bankfull width, and deep pools counts. To determine whether the translocation model applied to streams elsewhere with more precise abundance estimates, we examined the relation between electrofishing-based estimates of cutthroat trout abundance and these habitat variables plus occupied stream length. The preferred model was (population size)1/2 = 0.00508(stream length (m)) + 5.148 (N = 31). In contrast, a model based on data from the original translocation model included stream temperature and deep pool counts as variables. Differences in models appear to largely have a methodological rather than biological basis. Additional habitat coupled with increased habitat complexity may account for the form of the abundance – stream length relation in the electrofishing-based model. Model-derived estimates imply that many cutthroat trout populations are below thresholds associated with reduced risk of extinction. We believe that this model can reduce uncertainty about projected population sizes when selecting streams for reintroductions or evaluating unsampled streams.


2019 ◽  
Author(s):  
Abu Abdul-Quader

BACKGROUND Population size estimation of people who inject drugs (PWID) in Ho Chi Minh City (HCMC), Vietnam relied on the UNAIDS Estimation and Projection Package and reports from the city police department. The two estimates vary widely. OBJECTIVE To estimate the population size of people who inject drugs in Ho Chi Minh City, Vietnam METHODS Using Respondent-driven sampling (RDS), we implemented two-source capture-recapture method to estimate the population size of PWID in HCMC in 2017 in 7 out of 24 districts. The study included men or women aged at least 18 years who reported injecting illicit drugs in the last 90 days and who had lived in the city the past six months. We calculated two sets of size estimates, the first assumed that all participants in each survey round resided in the district where the survey was conducted, the second, used the district of residence as reported by the participant. District estimates were summed to obtain an aggregate estimate for the seven districts. To calculate the city total, we weighted the population size estimates for each district by the inverse of the stratum specific sampling probabilities. RESULTS The first estimate resulted in a population size of 19,155 (95% CI: 17,006–25,039). The second one generated a smaller population size estimate of 12,867 (95% CI: 11,312–17,393). CONCLUSIONS The two-survey capture-recapture exercise provided two disparate estimates of PWID in HCMC. For planning HIV prevention and care service needs among PWID in HCMC, both estimates may need to be taken into consideration together with size estimates from other sources.


2020 ◽  
Vol 20 (6) ◽  
Author(s):  
Abeysinghe Mudiyanselage Prabodha Sammani ◽  
Dissanayaka Mudiyanselage Saman Kumara Dissanayaka ◽  
Leanage Kanaka Wolly Wijayaratne ◽  
William Robert Morrison

Abstract The almond moth Cadra cautella (Walker), a key pest of storage facilities, is difficult to manage using synthetic chemicals. Pheromone-based management methods remain a high priority due to advantages over conventional management practices, which typically use insecticides. Cadra cautella females release a blend of pheromone including (Z, E)-9,12-tetradecadienyl acetate (ZETA) and (Z)-9-tetradecadien-1-yl acetate (ZTA). The effect of these components on mating of C. cautella and how response varies with the population density and sex ratio remain unknown. In this study, the mating status of C. cautella was studied inside mating cages under different ratios of ZETA and ZTA diluted in hexane and at different population sizes either with equal or unequal sex ratio. The lowest percentage of mated females (highest mating disruption [MD] effects), corresponding to roughly 12.5%, was produced by a 5:1 and 3.3:1 ratio of ZETA:ZTA. Populations with equal sex ratio showed the lowest percentage of mated females, at 20% and 12.5% under lower and higher density, respectively. The next lowest percentage of mated females was produced when the sex ratio was set to 1: 2 and 2:1 male:female, with just 25% and 22.5% of moths mated, respectively. This study shows that mating status of C. cautella is influenced by ZETA:ZTA ratio, sex ratio, and population size. This current knowledge would have useful implications for mating disruption programs.


Genetics ◽  
1973 ◽  
Vol 73 (3) ◽  
pp. 513-530
Author(s):  
J P Hanrahan ◽  
E J Eisen ◽  
J E Legates

ABSTRACT The effects of population size and selection intensity on the mean response was examined after 14 generations of within full-sib family selection for postweaning gain in mice. Population sizes of 1, 2, 4, 8 and 16 pair matings were each evaluated at selection intensities of 100% (control), 50% and 25% in a replicated experiment. Selection response per generation increased as selection intensity increased. Selection response and realized heritability tended to increase with increasing population size. Replicate variability in realized heritability was large at population sizes of 1, 2 and 4 pairs. Genetic drift was implicated as the primary factor causing the reduced response and lowered repeatability at the smaller population sizes. Lines with intended effective population sizes of 62 yielded larger selection responses per unit selection differential than lines with effective population sizes of 30 or less.


Oryx ◽  
2011 ◽  
Vol 45 (1) ◽  
pp. 112-118 ◽  
Author(s):  
Özgün Emre Can ◽  
İrfan Kandemi̇r ◽  
İnci̇ Togan

AbstractThe wildcat Felis silvestris is a protected species in Turkey but the lack of information on its status is an obstacle to conservation initiatives. To assess the status of the species we interviewed local forestry and wildlife personnel and conducted field surveys in selected sites in northern, eastern and western Turkey during 2000–2007. In January–May 2006 we surveyed for the wildcat using 16 passive infrared-trigged camera traps in Yaylacı k Research Forest, a 50-km2 forest patch in Yenice Forest in northern Turkey. A total sampling effort of 1,200 camera trap days over 40 km2 yielded photo-captures of eight individual wildcats over five sampling occasions. Using the software MARK to estimate population size the closed capture–recapture model M0, which assumes a constant capture probability among all occasions and individuals, best fitted the capture history data. The wildcat population size in Yaylacı k Research Forest was estimated to be 11 (confidence interval 9–23). Yenice Forest is probably one of the most important areas for the long-term conservation of the wildcat as it is the largest intact forest habitat in Turkey with little human presence, and without human settlements, and with a high diversity of prey species. However, it has been a major logging area and is not protected. The future of Yenice Forest and its wildcat population could be secured by granting this region a protection status and enforcing environmental legislation.


1963 ◽  
Vol 20 (1) ◽  
pp. 59-88 ◽  
Author(s):  
J. E. Paloheimo

Techniques of estimating population size, level of fishing, and the degree of dependence of fishing success on environmental factors are examined on the basis of tagging, catch and effort data. A new method is developed to estimate population size from catch, effort, and temperature data when the catchability varies with temperature.The methods of estimation discussed are applied to data collected from a number of lobster fisheries on Canada's Atlantic coast. Analysis confirms a relationship between the catchability of lobsters and bottom temperature. Differences in this relationship are found between areas and between tagged and untagged lobsters within areas. It is suggested that these differences are attributable to the differences in densities as well as to aggregations of lobsters and fishing. The effect of these aggregations on population size estimates is considered.Calculated average catchabilities at comparable temperatures are different for different areas. These differences are correlated with the numbers of trap hauls per day per square miles fished. It is suggested that the differences in the catchabilities might be due to interactions between units of gear not predicted by the customary relationship between catch and effort.


Sign in / Sign up

Export Citation Format

Share Document