scholarly journals Direction-selective motion discrimination by traveling waves in visual cortex

2020 ◽  
Author(s):  
Stewart Heitmann ◽  
G. Bard Ermentrout

AbstractThe majority of neurons in primary visual cortex respond selectively to bars of light that have a specific orientation and move in a specific direction. The spatial and temporal responses of such neurons are non-separable. How neurons accomplish that computational feat without resort to explicit time delays is unknown. We propose a novel neural mechanism whereby visual cortex computes non-separable responses by generating endogenous traveling waves of neural activity that resonate with the space-time signature of the visual stimulus. The spatiotemporal characteristics of the response are defined by the local topology of excitatory and inhibitory lateral connections in the cortex. We simulated the interaction between endogenous traveling waves and the visual stimulus using spatially distributed populations of excitatory and inhibitory neurons with Wilson-Cowan dynamics and inhibitory-surround coupling. Our model reliably detected visual gratings that moved with a given speed and direction provided that we incorporated neural competition to suppress false motion signals in the opposite direction. The findings suggest that endogenous traveling waves in visual cortex can impart direction-selectivity on neural responses without resort to explicit time delays. They also suggest a functional role for motion opponency in eliminating false motion signals.Author summaryIt is well established that the so-called ‘simple cells’ of the primary visual cortex respond preferentially to oriented bars of light that move across the visual field with a particular speed and direction. The spatiotemporal responses of such neurons are said to be non-separable because they cannot be constructed from independent spatial and temporal neural mechanisms. Contemporary theories of how neurons compute non-separable responses typically rely on finely tuned transmission delays between signals from disparate regions of the visual field. However the existence of such delays is controversial. We propose an alternative neural mechanism for computing non-separable responses that does not require transmission delays. It instead relies on the predisposition of the cortical tissue to spontaneously generate spatiotemporal waves of neural activity that travel with a particular speed and direction. We propose that the endogenous wave activity resonates with the visual stimulus to elicit direction-selective neural responses to visual motion. We demonstrate the principle in computer models and show that competition between opposing neurons robustly enhances their ability to discriminate between visual gratings that move in opposite directions.

2021 ◽  
Author(s):  
Jan Homann ◽  
Hyewon Kim ◽  
David W Tank ◽  
Michael J Berry

A notable feature of neural activity is sparseness - namely, that only a small fraction of neurons in a local circuit have high activity at any moment. Not only is sparse neural activity observed experimentally in most areas of the brain, but sparseness has been proposed as an optimization or design principle for neural circuits. Sparseness can increase the energy efficiency of the neu- ral code as well as allow for beneficial computations to be carried out. But how does the brain achieve sparse- ness? Here, we found that when neurons in the primary visual cortex were passively exposed to a set of images over several days, neural responses became more sparse. Sparsification was driven by a decrease in the response of neurons with low or moderate activity, while highly active neurons retained similar responses. We also observed a net decorrelation of neural activity. These changes sculpt neural activity for greater coding efficiency.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256791
Author(s):  
Daichi Konno ◽  
Shinji Nishimoto ◽  
Takafumi Suzuki ◽  
Yuji Ikegaya ◽  
Nobuyoshi Matsumoto

The brain continuously produces internal activity in the absence of afferently salient sensory input. Spontaneous neural activity is intrinsically defined by circuit structures and associated with the mode of information processing and behavioral responses. However, the spatiotemporal dynamics of spontaneous activity in the visual cortices of behaving animals remain almost elusive. Using a custom-made electrode array, we recorded 32-site electrocorticograms in the primary and secondary visual cortex of freely behaving rats and determined the propagation patterns of spontaneous neural activity. Nonlinear dimensionality reduction and unsupervised clustering revealed multiple discrete states of the activity patterns. The activity remained stable in one state and suddenly jumped to another state. The diversity and dynamics of the internally switching cortical states would imply flexibility of neural responses to various external inputs.


Stroke ◽  
2001 ◽  
Vol 32 (suppl_1) ◽  
pp. 334-334
Author(s):  
Gereon Nelles ◽  
Guido Widmann ◽  
Joachim Esser ◽  
Anette Meistrowitz ◽  
Johannes Weber ◽  
...  

102 Introduction: Restitution of unilateral visual field defects following occipital cortex lesions occurs rarely. Partial recovery, however, can be observed in patients with incomplete lesion of the visual cortex. Our objective was to study the neuroplastic changes in the visual system that underlie such recovery. Methods and Results: Six patients with a left PCA-territory cortical stroke and 6 healthy control subjects were studied during rest and during visual stimulation using a 1.5 T fMRI with a 40 mT gradient. Visual stimuli were projected with a laptop computer onto a 154 x 115 cm screen, placed 90 cm in front of the gantry. Subjects were asked to fixate a red point in the center of the screen during both conditions. During stimulation, a black-and-white checkerboard pattern reversal was presented in each hemifield. For each side, 120 volumes of 48 contiguous axial fMRI images were obtained during rest and during hemifield stimulation in alternating order (60 volumes for each condition). Significant differences of rCBF between stimulation and rest were assessed as group analyses using statistical parametric mapping (SPM 99; p<0.01, corrected for multiple comparison). In controls, strong increases of rCBF (Z=7.6) occurred in the contralateral primary visual cortex V1 (area 17) and in V3a (area 18) and V5 (area 19). No differences were found between the right and left side in controls. During stimulation of the unaffected (left) visual field in hemianopic patients, activation occurred in contralateral V1, but the strongest increases of rCBF (Z>10) were seen in contralateral V3a (area 18) and V5 (area 19). During stimulation of the hemianopic (right) visual field, no activation was found in the primary visual cortex of either hemisphere. The most significant activation (Z=9.2) was seen in the ipsilateral V3a and V5 areas, and contralateral (left) V3a. Conclusions: Partial recovery from hemianopia is associated with strong ipsilateral activation of the visual system. Processing of visual stimuli in the hemianopic side spares the primary visual cortex and may involve recruitment of neurons in ipsilateral (contralesional) areas V3a and V5.


2019 ◽  
Vol 121 (6) ◽  
pp. 2202-2214 ◽  
Author(s):  
John P. McClure ◽  
Pierre-Olivier Polack

Multimodal sensory integration facilitates the generation of a unified and coherent perception of the environment. It is now well established that unimodal sensory perceptions, such as vision, are improved in multisensory contexts. Whereas multimodal integration is primarily performed by dedicated multisensory brain regions such as the association cortices or the superior colliculus, recent studies have shown that multisensory interactions also occur in primary sensory cortices. In particular, sounds were shown to modulate the responses of neurons located in layers 2/3 (L2/3) of the mouse primary visual cortex (V1). Yet, the net effect of sound modulation at the V1 population level remained unclear. In the present study, we performed two-photon calcium imaging in awake mice to compare the representation of the orientation and the direction of drifting gratings by V1 L2/3 neurons in unimodal (visual only) or multimodal (audiovisual) conditions. We found that sound modulation depended on the tuning properties (orientation and direction selectivity) and response amplitudes of V1 L2/3 neurons. Sounds potentiated the responses of neurons that were highly tuned to the cue’s orientation and direction but weakly active in the unimodal context, following the principle of inverse effectiveness of multimodal integration. Moreover, sound suppressed the responses of neurons untuned for the orientation and/or the direction of the visual cue. Altogether, sound modulation improved the representation of the orientation and direction of the visual stimulus in V1 L2/3. Namely, visual stimuli presented with auditory stimuli recruited a neuronal population better tuned to the visual stimulus orientation and direction than when presented alone. NEW & NOTEWORTHY The primary visual cortex (V1) receives direct inputs from the primary auditory cortex. Yet, the impact of sounds on visual processing in V1 remains controverted. We show that the modulation by pure tones of V1 visual responses depends on the orientation selectivity, direction selectivity, and response amplitudes of V1 neurons. Hence, audiovisual stimuli recruit a population of V1 neurons better tuned to the orientation and direction of the visual stimulus than unimodal visual stimuli.


2005 ◽  
Vol 94 (2) ◽  
pp. 1336-1345 ◽  
Author(s):  
Bartlett D. Moore ◽  
Henry J. Alitto ◽  
W. Martin Usrey

The activity of neurons in primary visual cortex is influenced by the orientation, contrast, and temporal frequency of a visual stimulus. This raises the question of how these stimulus properties interact to shape neuronal responses. While past studies have shown that the bandwidth of orientation tuning is invariant to stimulus contrast, the influence of temporal frequency on orientation-tuning bandwidth is unknown. Here, we investigate the influence of temporal frequency on orientation tuning and direction selectivity in area 17 of ferret visual cortex. For both simple cells and complex cells, measures of orientation-tuning bandwidth (half-width at half-maximum response) are ∼20–25° across a wide range of temporal frequencies. Thus cortical neurons display temporal-frequency invariant orientation tuning. In contrast, direction selectivity is typically reduced, and occasionally reverses, at nonpreferred temporal frequencies. These results show that the mechanisms contributing to the generation of orientation tuning and direction selectivity are differentially affected by the temporal frequency of a visual stimulus and support the notion that stability of orientation tuning is an important aspect of visual processing.


2016 ◽  
Vol 23 (5) ◽  
pp. 529-541 ◽  
Author(s):  
Sara Ajina ◽  
Holly Bridge

Damage to the primary visual cortex removes the major input from the eyes to the brain, causing significant visual loss as patients are unable to perceive the side of the world contralateral to the damage. Some patients, however, retain the ability to detect visual information within this blind region; this is known as blindsight. By studying the visual pathways that underlie this residual vision in patients, we can uncover additional aspects of the human visual system that likely contribute to normal visual function but cannot be revealed under physiological conditions. In this review, we discuss the residual abilities and neural activity that have been described in blindsight and the implications of these findings for understanding the intact system.


Perception ◽  
1995 ◽  
Vol 24 (6) ◽  
pp. 695-717 ◽  
Author(s):  
Christoph von Campenhausen ◽  
Jürgen Schramme

For 100 years Benham's top has been a popular device demonstrating pattern-induced flicker colours (PIFCs). Results of early and recent investigations on PIFCs are reported and show that the phenomenon originates in phase-sensitive lateral interactions of modulated neural activity in the retina followed by additional spatial interactions in the visual cortex behind the locus of binocular fusion. Colour matches with normal colour stimuli indicate that S/(M + L) opponent neurons are involved. Dichromats do not find matching stimuli for all PIFCs. PIFCs may become useful in medical diagnosis. The phenomenon is interpreted as a side effect of a neural mechanism providing colour constancy under normal stimulus conditions.


Sign in / Sign up

Export Citation Format

Share Document