scholarly journals Mechanosensing through direct binding of tensed F-actin by LIM domains

2020 ◽  
Author(s):  
Xiaoyu Sun ◽  
Donovan Y. Z. Phua ◽  
Lucas Axiotakis ◽  
Mark A. Smith ◽  
Elizabeth Blankman ◽  
...  

SummaryMechanical signals transmitted through the cytoplasmic actin cytoskeleton must be relayed to the nucleus to control gene expression. LIM domains are protein-protein interaction modules found in cytoskeletal proteins and transcriptional regulators; however, it is unclear if there is a direct link between these two functions. Here we identify three LIM protein families (zyxin, paxillin, and FHL) whose members preferentially localize to the actin cytoskeleton in mechanically-stimulated cells through their tandem LIM domains. A minimal actin-myosin reconstitution system reveals that representatives of all three families directly bind F-actin only in the presence of mechanical force. Point mutations at a site conserved in each LIM domain of these proteins selectively disrupt tensed F-actin binding in vitro and cytoskeletal localization in cells, demonstrating a common, avidity-based mechanism. Finally, we find that binding to tensed F-actin in the cytoplasm excludes the cancer-associated transcriptional co-activator FHL2 from the nucleus in stiff microenvironments. This establishes direct force-activated F-actin binding by FHL2 as a mechanosensing mechanism. Our studies suggest that force-dependent sequestration of LIM proteins on the actin cytoskeleton could be a general mechanism for controlling nuclear localization to effect mechanical signaling.

1998 ◽  
Vol 111 (12) ◽  
pp. 1695-1706 ◽  
Author(s):  
B. Constantin ◽  
K. Meerschaert ◽  
J. Vandekerckhove ◽  
J. Gettemans

Fragmin from Physarum polycephalum is a gelsolin-like actin-binding protein and interferes with the growth of actin filaments in vitro by severing actin filaments and capping their barbed ends through formation of an actin-fragmin dimer in a Ca2+-dependent manner. The actin-fragmin dimer is phosphorylated in vivo and in vitro on the actin subunit by the actin-fragmin kinase. We have studied the properties of these capping proteins and their regulation by actin phosphorylation and Ca2+ ions in living PtK2, CV1 and NIH3T3 cultured cells by microinjection or by expression in conjunction with immunostaining and fluorescence microscopy. Microinjection of the actin-fragmin dimer disintegrated the actin cytoskeleton and altered cell morphology. This in vivo effect could be blocked by phosphorylation of the actin subunit by the actin-fragmin kinase in low Ca2+ conditions, and the capping activity could be recovered by high Ca2+ concentration, probably through activation of the second actin-binding site in fragmin. This suggests that in Physarum microplasmodia, actin polymerization can be controlled in a Ca2+-dependent manner through the phosphorylation of actin. Microinjected or overexpressed recombinant fragmin did not affect the actin-based cytoskeleton or cell morphology of resting cells, unless the cytosolic free Ca2+ concentration was increased by microinjection of a Ca2+-containing buffer. The cells were able to revert to their normal phenotype which indicates that endogenous regulatory mechanisms counteracted fragmin activity, probably by uncapping fragmin from the barbed ends of filaments. Fragmin also antagonized formation of stress fibers induced by lysophosphatidic acid. Our findings demonstrate that the interactions between actin and fragmin are tightly regulated by the cytosolic Ca2+ concentration and this provides a basis for a more general mechanism in higher organisms to regulate microfilament organization.


2002 ◽  
Vol 115 (15) ◽  
pp. 3207-3222 ◽  
Author(s):  
Yen-Yi Zhen ◽  
Thorsten Libotte ◽  
Martina Munck ◽  
Angelika A. Noegel ◽  
Elena Korenbaum

NUANCE (NUcleus and ActiN Connecting Element) was identified as a novel protein with an α-actinin-like actin-binding domain. A human 21.8 kb cDNA of NUANCE spreads over 373 kb on chromosome 14q22.1-q22.3. The cDNA sequence predicts a 796 kDa protein with an N-terminal actin-binding domain, a central coiled-coil rod domain and a predicted C-terminal transmembrane domain. High levels of NUANCE mRNA were detected in the kidney, liver,stomach, placenta, spleen, lymphatic nodes and peripheral blood lymphocytes. At the subcellular level NUANCE is present predominantly at the outer nuclear membrane and in the nucleoplasm. Domain analysis shows that the actin-binding domain binds to Factin in vitro and colocalizes with the actin cytoskeleton in vivo as a GFP-fusion protein. The C-terminal transmembrane domain is responsible for the targeting the nuclear envelope. Thus, NUANCE is the firstα-actinin-related protein that has the potential to link the microfilament system with the nucleus.


2011 ◽  
Vol 2011 ◽  
pp. 1-18
Author(s):  
Richard A. Zuellig ◽  
Beat C. Bornhauser ◽  
Ralf Amstutz ◽  
Bruno Constantin ◽  
Marcus C. Schaub

Utrophin and dystrophin present two large proteins that link the intracellular actin cytoskeleton to the extracellular matrix via the C-terminal-associated protein complex. Here we describe a novel short N-terminal isoform of utrophin and its protein product in various rat tissues (N-utro, 62 kDa, amino acids 1–539, comprising the actin-binding domain plus the first two spectrin repeats). Using different N-terminal recombinant utrophin fragments, we show that actin binding exhibits pronounced negative cooperativity (affinity constantsK1=∼5×106andK2=∼1×105 M-1) and is Ca2+-insensitive. Expression of the different fragments in COS7 cells and in myotubes indicates that the actin-binding domain alone binds exlusively to actin filaments. The recombinant N-utro analogue binds in vitro to actin and in the cells associates to the membranes. The results indicate that N-utro may be responsible for the anchoring of the cortical actin cytoskeleton to the membranes in muscle and other tissues.


2020 ◽  
Vol 21 (9) ◽  
pp. 3152 ◽  
Author(s):  
Samantha Joy Beckley ◽  
Morgan Campbell Hunter ◽  
Sarah Naulikha Kituyi ◽  
Ianthe Wingate ◽  
Abantika Chakraborty ◽  
...  

Cell migration plays a vital role in both health and disease. It is driven by reorganization of the actin cytoskeleton, which is regulated by actin-binding proteins cofilin and profilin. Stress-inducible phosphoprotein 1 (STIP1) is a well-described co-chaperone of the Hsp90 chaperone system, and our findings identify a potential regulatory role of STIP1 in actin dynamics. We show that STIP1 can be isolated in complex with actin and Hsp90 from HEK293T cells and directly interacts with actin in vitro via the C-terminal TPR2AB-DP2 domain of STIP1, potentially due to a region spanning two putative actin-binding motifs. We found that STIP1 could stimulate the in vitro ATPase activity of actin, suggesting a potential role in the modulation of F-actin formation. Interestingly, while STIP1 depletion in HEK293T cells had no major effect on total actin levels, it led to increased nuclear accumulation of actin, disorganization of F-actin structures, and an increase and decrease in cofilin and profilin levels, respectively. This study suggests that STIP1 regulates the cytoskeleton by interacting with actin, or via regulating the ratio of proteins known to affect actin dynamics.


2015 ◽  
Vol 71 (9) ◽  
pp. 1835-1849 ◽  
Author(s):  
Min-Kyu Kim ◽  
Ji-Hye Kim ◽  
Ji-Sun Kim ◽  
Sa-Ouk Kang

The crystal structure of the 34 kDa F-actin-bundling protein ABP34 fromDictyostelium discoideumwas solved by Ca2+/S-SAD phasing and refined at 1.89 Å resolution. ABP34 is a calcium-regulated actin-binding protein that cross-links actin filaments into bundles. Itsin vitroF-actin-binding and F-actin-bundling activities were confirmed by a co-sedimentation assay and transmission electron microscopy. The co-localization of ABP34 with actin in cells was also verified. ABP34 adopts a two-domain structure with an EF-hand-containing N-domain and an actin-binding C-domain, but has no reported overall structural homologues. The EF-hand is occupied by a calcium ion with a pentagonal bipyramidal coordination as in the canonical EF-hand. The C-domain structure resembles a three-helical bundle and superposes well onto the rod-shaped helical structures of some cytoskeletal proteins. Residues 216–244 in the C-domain form part of the strongest actin-binding sites (193–254) and exhibit a conserved sequence with the actin-binding region of α-actinin and ABP120. Furthermore, the second helical region of the C-domain is kinked by a proline break, offering a convex surface towards the solvent area which is implicated in actin binding. The F-actin-binding model suggests that ABP34 binds to the side of the actin filament and residues 216–244 fit into a pocket between actin subdomains −1 and −2 through hydrophobic interactions. These studies provide insights into the calcium coordination in the EF-hand and F-actin-binding site in the C-domain of ABP34, which are associated through interdomain interactions.


2008 ◽  
Vol 36 (2) ◽  
pp. 189-193 ◽  
Author(s):  
Jean-Christophe Taveau ◽  
Mathilde Dubois ◽  
Olivier Le Bihan ◽  
Sylvain Trépout ◽  
Sébastien Almagro ◽  
...  

In vascular endothelium, adherens junctions between endothelial cells are composed of VE-cadherin (vascular endothelial cadherin), an adhesive receptor that is crucial for the proper assembly of vascular structures and the maintenance of vascular integrity. As a classical cadherin, VE-cadherin links endothelial cells together by homophilic interactions mediated by its extracellular part and associates intracellularly with the actin cytoskeleton via catenins. Although, from structural crystallographic data, a dimeric structure arranged in a trans orientation has emerged as a potential mechanism of cell–cell adhesion, the cadherin organization within adherens junctions remains controversial. Concerning VE-cadherin, its extracellular part possesses the capacity to self-associate in solution as hexamers consisting of three antiparallel cadherin dimers. VE-cadherin-based adherens junctions were reconstituted in vitro by assembly of a VE-cadherin EC (extracellular repeat) 1–EC4 hexamer at the surfaces of liposomes. The artificial adherens junctions revealed by cryoelectron microscopy appear as a two-dimensional self-assembly of hexameric structures. This cadherin organization is reminiscent of that found in native desmosomal junctions. Further structural studies performed on native VE-cadherin junctions would provide a better understanding of the cadherin organization within adherens junctions. Homophilic interactions between cadherins are strengthened intracellularly by connection to the actin cytoskeleton. Recently, we have discovered that annexin 2, an actin-binding protein connects the VE-cadherin–catenin complex to the actin cytoskeleton. This novel link is labile and promotes the endothelial cell switch from a quiescent to an angiogenic state.


2020 ◽  
Vol 117 (41) ◽  
pp. 25532-25542 ◽  
Author(s):  
Jonathan D. Winkelman ◽  
Caitlin A. Anderson ◽  
Cristian Suarez ◽  
David R. Kovar ◽  
Margaret L. Gardel

The actin cytoskeleton assembles into diverse load-bearing networks, including stress fibers (SFs), muscle sarcomeres, and the cytokinetic ring to both generate and sense mechanical forces. The LIM (Lin11, Isl- 1, and Mec-3) domain family is functionally diverse, but most members can associate with the actin cytoskeleton with apparent force sensitivity. Zyxin rapidly localizes via its LIM domains to failing SFs in cells, known as strain sites, to initiate SF repair and maintain mechanical homeostasis. The mechanism by which these LIM domains associate with stress fiber strain sites (SFSS) is not known. Additionally, it is unknown how widespread strain sensing is within the LIM protein family. We identify that the LIM domain-containing region of 18 proteins from the Zyxin, Paxillin, Tes, and Enigma proteins accumulate to SFSS. Moreover, the LIM domain region from the fission yeast protein paxillin like 1 (Pxl1) also localizes to SFSS in mammalian cells, suggesting that the strain sensing mechanism is ancient and highly conserved. We then used sequence and domain analysis to demonstrate that tandem LIM domains contribute additively, for SFSS localization. Employing in vitro reconstitution, we show that the LIM domain-containing region from mammalian zyxin and fission yeast Pxl1 binds to mechanically stressed F-actin networks but does not associate with relaxed actin filaments. We propose that tandem LIM domains recognize an F-actin conformation that is rare in the relaxed state but is enriched in the presence of mechanical stress.


2015 ◽  
Vol 112 (29) ◽  
pp. 9010-9015 ◽  
Author(s):  
Kendra E. Leigh ◽  
Mayuri Sharma ◽  
My Sam Mansueto ◽  
Andras Boeszoermenyi ◽  
David J. Filman ◽  
...  

Herpesviruses require a nuclear egress complex (NEC) for efficient transit of nucleocapsids from the nucleus to the cytoplasm. The NEC orchestrates multiple steps during herpesvirus nuclear egress, including disruption of nuclear lamina and particle budding through the inner nuclear membrane. In the important human pathogen human cytomegalovirus (HCMV), this complex consists of nuclear membrane protein UL50, and nucleoplasmic protein UL53, which is recruited to the nuclear membrane through its interaction with UL50. Here, we present an NMR-determined solution-state structure of the murine CMV homolog of UL50 (M50; residues 1–168) with a strikingly intricate protein fold that is matched by no other known protein folds in its entirety. Using NMR methods, we mapped the interaction of M50 with a highly conserved UL53-derived peptide, corresponding to a segment that is required for heterodimerization. The UL53 peptide binding site mapped onto an M50 surface groove, which harbors a large cavity. Point mutations of UL50 residues corresponding to surface residues in the characterized M50 heterodimerization interface substantially decreased UL50–UL53 binding in vitro, eliminated UL50–UL53 colocalization, prevented disruption of nuclear lamina, and halted productive virus replication in HCMV-infected cells. Our results provide detailed structural information on a key protein–protein interaction involved in nuclear egress and suggest that NEC subunit interactions can be an attractive drug target.


Development ◽  
1999 ◽  
Vol 126 (23) ◽  
pp. 5267-5274 ◽  
Author(s):  
A. Wellington ◽  
S. Emmons ◽  
B. James ◽  
J. Calley ◽  
M. Grover ◽  
...  

Spire is a maternal effect locus that affects both the dorsal-ventral and anterior-posterior axes of the Drosophila egg and embryo. It is required for localization of determinants within the developing oocyte to the posterior pole and to the dorsal anterior corner. During mid-oogenesis, spire mutants display premature microtubule-dependent cytoplasmic streaming, a phenotype that can be mimicked by pharmacological disruption of the actin cytoskeleton with cytochalasin D. Spire has been cloned by transposon tagging and is related to posterior end mark-5, a gene from sea squirts that encodes a posteriorly localized mRNA. Spire mRNA is not, however, localized to the posterior pole. SPIRE also contains two domains with similarity to the actin monomer-binding WH2 domain, and we demonstrate that SPIRE binds to actin in the interaction trap system and in vitro. In addition, SPIRE interacts with the rho family GTPases RHOA, RAC1 and CDC42 in the interaction trap system. Thus, our evidence supports the model that SPIRE links rho family signaling to the actin cytoskeleton.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 755-755 ◽  
Author(s):  
Maria Feola ◽  
Andrea Zamperone ◽  
Weili Bao ◽  
Tenzin Choesang ◽  
Huihui Li ◽  
...  

Abstract Erythropoiesis is a process during which multipotent hematopoietic stem cells proliferate, differentiate and ultimately produce enucleated reticulocytes. Terminal erythroid differentiation begins at the morphologically recognizable pro-erythroblast (pro-E) stage and is completed when orthochromatic erythroblasts (ortho-E) expel their nuclei to produce reticulocytes. Progressive differentiation between these stages occurs in homologous cell division progressively doubling proportions of pro-E, basophilic (baso-E), polychromatophilic (poly-E), and ortho-E, and multiple signaling pathways are involved in the generation of enucleated erythroid cells, including multiple steps requiring actin cytoskeleton reorganization. We have previously shown that β-thalassemic mice (th1/th1) demonstrate a disordered progression from pro-E to baso-E and that exogenous transferrin therapy restores normal proportion of early stage erythroid precursors in th1/th1 mice (Liu Blood 2013). To identify genes that play novel function in different stages of terminal erythropoiesis, we performed RNA seq analysis of sorted bone marrow pro-E from WT, th1/th1, and transferrin-treated th1/th1 mice. We identify pleckstrin-2 (plek2) as a gene of interest with a 15-fold increase in plek2 mRNA expression in th1/th1 relative to WT mice, normalized in transferrin-treated th1/th1 mice. Plek2 is an actin binding protein, like pleckstrin-1, contains a central DEP domain known to bind RacGTPase, is Epo dependent, and is expressed in all stages of terminal erythropoiesis. We evaluate plek2 mRNA and protein expression in sorted bone marrow erythroid precursors from WT, th1/th1, and transferrin-treated th1/th1 mice. Our data demonstrates a statistically significant increase in plek2 mRNA in th1/th1 relative to WT mice, with the highest expression of plek2 in poly-E, normalized in transferrin-treated th1/th1 mice (Figure 1A). A similar pattern of increased protein concentration in th1/th1 relative to WT mice and normalization in transferrin-treated th1/th1 mice is evident in sorted bone marrow samples (Figure 1B). Prior in vitro studies demonstrate that membrane localization of plek2 is required for erythroid differentiation. Thus, we performed sub-cellular fractionation in bone marrow erythroid precursors and determined for the first time that in sorted erythroblasts from WT bone marrow, plek2 is found exclusively in the cytoplasm in pro-E and in both cytoplasm and membrane from baso-E to ortho-E (Figure 2), co-localized with actin filaments in the membrane (data not shown). In contrast, sorted erythroblasts from th1/th1 bone marrow reveal membrane-associated plek2 starting from pro-E, demonstrating earlier co-localization with actin filaments (data not shown) and suggesting an earlier activation of plek2 and consequent actin cytoskeleton reorganization during erythroid differentiation in th1/th1 mice, normalized in transferrin-treated th1/th1 mice (Figure 2). Erythropoiesis involves a complicated and incompletely understood set of potentially related molecular signals influencing cell survival, differentiation, enucleation, and release into the circulation. For example, although Epo increases survival, Epo signaling also activates RacGTPases, inhibiting enucleation. Recent in vitro data demonstrates that knockdown of plek2 affected enucleation with significantly lower reticulocyte count. Although the involvement of RacGTPase in plek2-mediated erythroid differentiation has not been explored, we hypothesize that plek2 activation triggers RacGTPase and prevents enucleation in th1/th1 mice. Our data demonstrates that RacGTPase concentration is increased in sorted bone marrow erythroid precursors from th1/th1 relative to WT mice and normalized in transferrin-treated th1/th1 mice (Figure 1B). These results suggest that plek2 plays an important role in erythropoiesis likely as a key factor in the improved enucleation of transferrin-treated th1/th1 mice. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document