scholarly journals Epigenomics and Transcriptomics of Systemic Sclerosis CD4+ T cells reveal Long Range Dysregulation of Key Inflammatory Pathways mediated by disease-associated Susceptibility Loci

Author(s):  
Tianlu Li ◽  
Lourdes Ortiz ◽  
Eduardo Andrés-León ◽  
Laura Ciudad ◽  
Biola M. Javierre ◽  
...  

ABSTRACTSystem sclerosis (SSc) is a genetically complex autoimmune disease mediated by the interplay between genetic and epigenetic factors in a multitude of immune cells, with CD4+ T lymphocytes as one of the principle drivers of pathogenesis. In this study, we obtained DNA methylation and expression profiles of CD4+ T cells from 48 SSc patients and 16 healthy controls. Consequently, we identified 9112 and 3929 differentially methylated CpGs positions (DMPs) and differentially expressed genes (DEGs) respectively. These DMPs and DEGs are enriched in functional categories related to inflammation and T cell biology. Furthermore, correlation analysis identified 17,500 possible DMP-DEG interaction pairs within a window of 5 Mb, and utilizing promoter capture Hi-C data, we confirmed that 212 CD4+ T cel specific pairs of DMP-DEG physically interact involving CTCF. Finally, utilizing SSc GWAS data, we identified four important SSc-associated susceptibility loci, TNIP1 (rs3792783), GSDMB (rs9303277), IL12RB1 (rs2305743) and CSK (rs1378942), that physically interact with DMP-DEG pairs cg17239269-ANXA6, cg19458020-CCR7, cg10808810-JUND and cg11062629-ULK3 respectively. Overall, our study reveals a solid link between genetic, epigenetic and transcriptional deregulation in CD4+ T cells of SSc patients, providing a novel integrated view of SSc pathogenic determinants.

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Tianlu Li ◽  
Lourdes Ortiz-Fernández ◽  
Eduardo Andrés-León ◽  
Laura Ciudad ◽  
Biola M. Javierre ◽  
...  

Abstract Background Systemic sclerosis (SSc) is a genetically complex autoimmune disease mediated by the interplay between genetic and epigenetic factors in a multitude of immune cells, with CD4+ T lymphocytes as one of the principle drivers of pathogenesis. Methods DNA samples exacted from CD4+ T cells of 48 SSc patients and 16 healthy controls were hybridized on MethylationEPIC BeadChip array. In parallel, gene expression was interrogated by hybridizing total RNA on Clariom™ S array. Downstream bioinformatics analyses were performed to identify correlating differentially methylated CpG positions (DMPs) and differentially expressed genes (DEGs), which were then confirmed utilizing previously published promoter capture Hi-C (PCHi-C) data. Results We identified 9112 and 3929 DMPs and DEGs, respectively. These DMPs and DEGs are enriched in functional categories related to inflammation and T cell biology. Furthermore, correlation analysis identified 17,500 possible DMP-DEG interaction pairs within a window of 5 Mb, and utilizing PCHi-C data, we observed that 212 CD4+ T cell-specific pairs of DMP-DEG also formed part of three-dimensional promoter-enhancer networks, potentially involving CTCF. Finally, combining PCHi-C data with SSc GWAS data, we identified four important SSc-associated susceptibility loci, TNIP1 (rs3792783), GSDMB (rs9303277), IL12RB1 (rs2305743), and CSK (rs1378942), that could potentially interact with DMP-DEG pairs cg17239269-ANXA6, cg19458020-CCR7, cg10808810-JUND, and cg11062629-ULK3, respectively. Conclusion Our study unveils a potential link between genetic, epigenetic, and transcriptional deregulation in CD4+ T cells of SSc patients, providing a novel integrated view of molecular components driving SSc pathogenesis.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 244 ◽  
Author(s):  
Antonio Victor Campos Coelho ◽  
Rossella Gratton ◽  
João Paulo Britto de Melo ◽  
José Leandro Andrade-Santos ◽  
Rafael Lima Guimarães ◽  
...  

HIV-1 infection elicits a complex dynamic of the expression various host genes. High throughput sequencing added an expressive amount of information regarding HIV-1 infections and pathogenesis. RNA sequencing (RNA-Seq) is currently the tool of choice to investigate gene expression in a several range of experimental setting. This study aims at performing a meta-analysis of RNA-Seq expression profiles in samples of HIV-1 infected CD4+ T cells compared to uninfected cells to assess consistently differentially expressed genes in the context of HIV-1 infection. We selected two studies (22 samples: 15 experimentally infected and 7 mock-infected). We found 208 differentially expressed genes in infected cells when compared to uninfected/mock-infected cells. This result had moderate overlap when compared to previous studies of HIV-1 infection transcriptomics, but we identified 64 genes already known to interact with HIV-1 according to the HIV-1 Human Interaction Database. A gene ontology (GO) analysis revealed enrichment of several pathways involved in immune response, cell adhesion, cell migration, inflammation, apoptosis, Wnt, Notch and ERK/MAPK signaling.


2001 ◽  
Vol 194 (10) ◽  
pp. 1473-1483 ◽  
Author(s):  
Isabel Ferrero ◽  
Anne Wilson ◽  
Friedrich Beermann ◽  
Werner Held ◽  
H. Robson MacDonald

A particular feature of γδ T cell biology is that cells expressing T cell receptor (TCR) using specific Vγ/Vδ segments are localized in distinct epithelial sites, e.g., in mouse epidermis nearly all γδ T cells express Vγ3/Vδ1. These cells, referred to as dendritic epidermal T cells (DETC) originate from fetal Vγ3+ thymocytes. The role of γδ TCR specificity in DETC's migration/localization to the skin has remained controversial. To address this issue we have generated transgenic (Tg) mice expressing a TCR δ chain (Vδ6.3-Dδ1-Dδ2-Jδ1-Cδ), which can pair with Vγ3 in fetal thymocytes but is not normally expressed by DETC. In wild-type (wt) Vδ6.3Tg mice DETC were present and virtually all of them express Vδ6.3. However, DETC were absent in TCR-δ−/− Vδ6.3Tg mice, despite the fact that Vδ6.3Tg γδ T cells were present in normal numbers in other lymphoid and nonlymphoid tissues. In wt Vδ6.3Tg mice, a high proportion of in-frame Vδ1 transcripts were found in DETC, suggesting that the expression of an endogenous TCR-δ (most probably Vδ1) was required for the development of Vδ6.3+ epidermal γδ T cells. Collectively our data demonstrate that TCR specificity is essential for the development of γδ T cells in the epidermis. Moreover, they show that the TCR-δ locus is not allelically excluded.


Blood ◽  
1999 ◽  
Vol 93 (6) ◽  
pp. 1980-1991 ◽  
Author(s):  
Sampsa Matikainen ◽  
Timo Sareneva ◽  
Tapani Ronni ◽  
Anne Lehtonen ◽  
Päivi J. Koskinen ◽  
...  

Interferon- (IFN-) is a pleiotropic cytokine that has antiviral, antiproliferative, and immunoregulatory functions. There is increasing evidence that IFN- has an important role in T-cell biology. We have analyzed the expression ofIL-2R, c-myc, and pim-1 genes in anti-CD3–activated human T lymphocytes. The induction of these genes is associated with interleukin-2 (IL-2)–induced T-cell proliferation. Treatment of T lymphocytes with IFN-, IL-2, IL-12, and IL-15 upregulated IL-2R, c-myc, andpim-1 gene expression. IFN- also sensitized T cells to IL-2–induced proliferation, further suggesting that IFN- may be involved in the regulation of T-cell mitogenesis. When we analyzed the nature of STAT proteins capable of binding to IL-2R,pim-1, and IRF-1 GAS elements after cytokine stimulation, we observed IFN-–induced binding of STAT1, STAT3, and STAT4, but not STAT5 to all of these elements. Yet, IFN- was able to activate binding of STAT5 to the high-affinity IFP53 GAS site. IFN- enhanced tyrosine phosphorylation of STAT1, STAT3, STAT4, STAT5a, and STAT5b. IL-12 induced STAT4 and IL-2 and IL-15 induced STAT5 binding to the GAS elements. Taken together, our results suggest that IFN-, IL-2, IL-12, and IL-15 have overlapping activities on human T cells. These findings thus emphasize the importance of IFN- as a T-cell regulatory cytokine.


2020 ◽  
Vol 217 (12) ◽  
Author(s):  
Youenn Jouan ◽  
Antoine Guillon ◽  
Loïc Gonzalez ◽  
Yonatan Perez ◽  
Chloé Boisseau ◽  
...  

COVID-19 includes lung infection ranging from mild pneumonia to life-threatening acute respiratory distress syndrome (ARDS). Dysregulated host immune response in the lung is a key feature in ARDS pathophysiology. However, cellular actors involved in COVID-19–driven ARDS are poorly understood. Here, in blood and airways of severe COVID-19 patients, we serially analyzed unconventional T cells, a heterogeneous class of T lymphocytes (MAIT, γδT, and iNKT cells) with potent antimicrobial and regulatory functions. Circulating unconventional T cells of COVID-19 patients presented with a profound and persistent phenotypic alteration. In the airways, highly activated unconventional T cells were detected, suggesting a potential contribution in the regulation of local inflammation. Finally, expression of the CD69 activation marker on blood iNKT and MAIT cells of COVID-19 patients on admission was predictive of clinical course and disease severity. Thus, COVID-19 patients present with an altered unconventional T cell biology, and further investigations will be required to precisely assess their functions during SARS–CoV-2–driven ARDS.


2010 ◽  
Vol 207 (3) ◽  
pp. 505-520 ◽  
Author(s):  
Xiaoyuan Huang ◽  
Xiangyang Bai ◽  
Yang Cao ◽  
Jingyi Wu ◽  
Mei Huang ◽  
...  

Angiogenesis is increasingly recognized as an important prognosticator associated with the progression of lymphoma and as an attractive target for novel modalities. We report a previously unrecognized mechanism by which lymphoma endothelium facilitates the growth and dissemination of lymphoma by interacting with circulated T cells and suppresses the activation of CD4+ T cells. Global gene expression profiles of microdissected endothelium from lymphoma and reactive lymph nodes revealed that T cell immunoglobulin and mucin domain–containing molecule 3 (Tim-3) was preferentially expressed in lymphoma-derived endothelial cells (ECs). Clinically, the level of Tim-3 in B cell lymphoma endothelium was closely correlated to both dissemination and poor prognosis. In vitro, Tim-3+ ECs modulated T cell response to lymphoma surrogate antigens by suppressing activation of CD4+ T lymphocytes through the activation of the interleukin-6–STAT3 pathway, inhibiting Th1 polarization, and providing protective immunity. In a lymphoma mouse model, Tim-3–expressing ECs promoted the onset, growth, and dissemination of lymphoma by inhibiting activation of CD4+ T cells and Th1 polarization. Our findings strongly argue that the lymphoma endothelium is not only a vessel system but also a functional barrier facilitating the establishment of lymphoma immune tolerance. These findings highlight a novel molecular mechanism that is a potential target for enhancing the efficacy of tumor immunotherapy and controlling metastatic diseases.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3887-3887
Author(s):  
Arnob Banerjee ◽  
Felix Schambach ◽  
Scott Hammond ◽  
Steven Reiner

Abstract Micro-RNAs comprise a class of small noncoding RNAs which have been found to be important regulators of cellular differentiation in multiple species. Previous analysis of micro-RNA expression in the murine hematopoietic system has suggested a role in cell differentiation and the maintenance of cell identity. Naïve progenitor CD4+ T cells respond to a combination of appropriate antigen and other specific signals by undergoing proliferation and further differentiation into one of at least two subsets. T helper 1 (TH1) cells produce high levels of the cytokine IFN-γ and T helper 2 (TH2) cells produce high levels of IL-4, optimizing them for control of intracellular and extracellular pathogens, respectively. It is currently not known whether micro-RNA molecules influence CD4+ T cell differentiation. We have used oligonucleotide arrays to analyze micro-RNA expression profiles of freshly isolated murine CD4+ T cells compared to cells differentiating into TH1 and TH2 subsets. Expression profiles were found to differ significantly between naïve and stimulated CD4+ cells, with fewer differences between TH1 and TH2 subsets. Promising candidate micro-RNAs are being further evaluated by northern blot and genetic studies. Micro-RNA-155 is upregulated on stimulation of CD4+ T cells in multiple oligonucleotide array assays. Micro-RNA-155 is encoded by the BIC oncogene and has been implicated in lymphomagenesis as well as in other malignancies. We have verified the induction of micro-RNA-155 in stimulated helper T cells by northern blot and are studying the effects of this micro-RNA on CD4+ T cell differentiation. Our observations support a role for micro-RNAs in helper T cell differentiation during the immune response.


Viruses ◽  
2017 ◽  
Vol 9 (10) ◽  
pp. 295 ◽  
Author(s):  
Alexandra Tremblay-McLean ◽  
Julie Bruneau ◽  
Bertrand Lebouché ◽  
Irene Lisovsky ◽  
Rujun Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document