scholarly journals Cropping systems that improve richness convey greater resistance and resilience to soil fungal, relative to prokaryote, communities

2020 ◽  
Author(s):  
D.R. Finn ◽  
S. Lee ◽  
A. Lanzén ◽  
M. Bertrand ◽  
G.W. Nicol ◽  
...  

AbstractResistance is the capacity for a community to remain unchanged, and resilience the capacity to return to an original state, in response to disturbance. Increasing species richness may increase both dynamics. In a long-term agricultural field experiment incorporating conventional (CON), conservation (CA), organic (ORG) and integrated (INT) cropping systems, the effects of crop harvest and fallow period on the disturbance of prokaryote, fungal and arbuscular mycorrhizal fungi (AMF) communities were investigated. Prokaryote community structure shifted over the growing season, forming distinct saprotroph- and rhizosphere-dominated communities, and composition was primarily affected by time than cropping system. Species-rich prokaryotes demonstrated the highest resistance/resilience. Cropping system was more important for fungal communities, with resistance highest under CA. CON was particularly detrimental to AMF resistance and resilience. Prokaryote plant-growth promoters and saprotrophs, but not ammonia oxidisers and methylotrophs, were stable functional groups. Cosmopolitan soil fungal genera were stable, but most were not. Glomus AMF were stable, while most other genera were most stable under CA and ORG. These results demonstrate that practices promoting richness increase the stability of soil microbial communities in response to crop removal after harvest, with this effect being more pronounced in fungal (and AMF) communities.

2020 ◽  
Author(s):  
Ifeyinwa Monica Uzoh ◽  
Chukwuebuka Christopher Okolo ◽  
Akudo Ogechukwu Onunwa ◽  
Olubukola Oluranti Babalola

<p><strong>Abstract</strong></p><p>Cowpea, a food and nutrition security crop is being threatened by decline in soil fertility especially in small holder farmstead. The natural arbuscular mycorrhizal fungi in the soil could improve its ability to acquire and retain nutrients thereby leading to higher yield. This irrigated field research was conducted to determine the effect of biochar rates and cropping systems on selected soil chemical properties, soil microbial biomass carbon (SMBC), nitrogen (SMBN), phosphorus (SMBP), and vesicular-arbuscular mycorrhizal (VAM) spore count and mycorrhizal fungi colonization (AMF) of cowpea. Experimental design was 3 x 3 factorial in randomized complete block design (RCBD). Factor A was three cropping systems; sole cowpea, intercropping and intra-cropping, while factor B was three biochar rates; control (biochar at 0 t ha<sup>-1</sup> (B<sub>0</sub>)), biochar at 2.5 t ha<sup>-1 </sup>(B<sub>1</sub>) and biochar at 5 t ha<sup>-1</sup> (B<sub>2</sub>). These were replicated in three blocks to constitute 27 plots. The entire plot was cleared, ploughed and demarcated into beds with hoes and diggers. Cowpea sole or inter- or intra- cropped with maize were planted in a spacing distance of 25cm by 75cm, with intercropped cowpea being in-between the interrow spacing (75 cm), while the intracropped cowpeas was planted between the intrarow spacing (25 cm). Biochar soil amendment were applied two weeks after planting by making a groove in-between the rows in the soil and covering them with soil. The result showed that biochar soil amendment and interaction of biochar with cropping system significantly (p<0.05) affected SMBN, SMBC, total  VAM spore count and AMF colonization by cowpea, whereas cropping system significantly affected only total VAM spore count and AMF colonization by cowpea. B<sub>2</sub> amended soil had the highest SMBC content (0.028 mg kg<sup>-1</sup>) while the least was from control plot (0.021 mg kg <sup>-1</sup>), SMBN was highest in B<sub>1 </sub>amended soil (0.004 mg kg<sup>-1</sup>), followed by control plot (0.002 mg kg<sup>-1</sup>). Control had higher AMF and total VAM spore count while biochar amended soil had higher soil microbial properties. Considering the cropping systems, inter and intra-cropping had higher microbial biomass and total VAM spore count than sole cowpea whereas sole cowpea had higher AMF infection of cowpea than the intercropped cowpea. Biochar at 5 tha<sup>-1</sup> had the highest available P. Generally, this study showed superiority of the interaction of biochar with cropping systems over sole cropping in the improvement of soil properties in degraded soils of North-West province of South Africa.</p><p>Key words: Cropping systems; Chromic Luvisol; Microbial properties; Soil fertility; Soil amendment</p>


Author(s):  
Jane Oja ◽  
Sakeenah Adenan ◽  
Abdel-Fattah Talaat ◽  
Juha Alatalo

A broad diversity of microorganisms can be found in soil, where they are essential for nutrient cycling and energy transfer. Recent high-throughput sequencing methods have greatly advanced our knowledge about how soil, climate and vegetation variables structure the composition of microbial communities in many world regions. However, we are lacking information from several regions in the world, e.g. Middle-East. We have collected soil from 19 different habitat types for studying the diversity and composition of soil microbial communities (both fungi and bacteria) in Qatar and determining which edaphic parameters exert the strongest influences on these communities. Preliminary results indicate that in overall bacteria are more abundant in soil than fungi and few sites have notably higher abundance of these microbes. In addition, we have detected some soil patameters, which tend to have reduced the overall fungal abundance and enhanced the presence of arbuscular mycorrhizal fungi and N-fixing bacteria. More detailed information on the diversity and composition of soil microbial communities is expected from the high-throughput sequenced data.


2006 ◽  
Vol 21 (4) ◽  
pp. 245-252 ◽  
Author(s):  
Jason L. De Bruin ◽  
Nicholas R. Jordan ◽  
Paul M. Porter ◽  
Sheri C. Huerd

AbstractIntegration of rye (Secale cereale L.) cover crops into the corn (Zea mays L.) soybean [(Glycine max (L.) Merr.] rotation of the upper Midwest USA can provide many agronomic and agroecological benefits. Integration is made difficult by short growing seasons, but may be facilitated by management of key agroecological interactions such as those between rye and soil microbiota. Rye growth was measured and colonization by arbuscular-mycorrhizal fungi (AMF) was determined in greenhouse experiments using soils from seven different management systems from a long-term cropping-systems experiment in southwest Minnesota. Microbial effects on rye growth were not evident before vernalization, but at final harvest (4 weeks after vernalization) soil microbial populations reduced rye shoot and root growth, relative to a pasteurized control inoculum. At final harvest, shoot biomass in 2-year rotations was 17% greater than 4-year rotations, indicating that microbial populations selected for by 4-year rotations may be more deleterious or pathogenic than those selected for by 2-year rotations. Growth of three rye cultivars was examined in all inocula; cultivars differed in their mean response to soil microbiota and their ability to host AMF. These findings suggest that management factors affect interactions between rye and soil microbiota resulting in altered rye growth.


1999 ◽  
Vol 8 (3) ◽  
pp. 309-318 ◽  
Author(s):  
M. VESTBERG ◽  
M. CARDOSO ◽  
A. MÅRTENSSON

The occurrence of arbuscule-forming fungi in different cropping systems was investigated at Cochabamba in the province of Cercado, Bolivia. The cropping systems included grain and mixed pasture systems, with or without fertilization and agrochemicals. Geographically, the soils studied were situated at 17°23'9'' southern latitude and 66°9'35'' western longitude and a mean height of 2600 m above sea level. Spores of four arbuscular mycorrhiza fungi-forming genera were observed; Glomus Tul. & Tul., Entrophospora Ames & Schneider, Sclerocystis Berk. & Broome emend. Almeida & Schenck and Scutellospora Walker & Sanders. Glomus was the dominating genus, followed by Sclerocystis; Scutellospora and Entrophospora were observed occasionally. A cropping system consisting of a native pasture without any fertilization or other plant or soil treatments had the highest numbers of spores and the highest species richness, i.e. eight out of nine species identified. The mycorrhizal diversity measured with the Shannon-Wiener index did however not differ very much between cropping systems. ;


2017 ◽  
Vol 14 (20) ◽  
pp. 4815-4827 ◽  
Author(s):  
Chuang Zhang ◽  
Xin-Yu Zhang ◽  
Hong-Tao Zou ◽  
Liang Kou ◽  
Yang Yang ◽  
...  

Abstract. The nitrate to ammonium ratios in nitrogen (N) compounds in wet atmospheric deposits have increased over the recent past, which is a cause for some concern as the individual effects of nitrate and ammonium deposition on the biomass of different soil microbial communities and enzyme activities are still poorly defined. We established a field experiment and applied ammonium (NH4Cl) and nitrate (NaNO3) at monthly intervals over a period of 4 years. We collected soil samples from the ammonium and nitrate treatments and control plots in three different seasons, namely spring, summer, and fall, to evaluate the how the biomass of different soil microbial communities and enzyme activities responded to the ammonium (NH4Cl) and nitrate (NaNO3) applications. Our results showed that the total contents of phospholipid fatty acids (PLFAs) decreased by 24 and 11 % in the ammonium and nitrate treatments, respectively. The inhibitory effects of ammonium on Gram-positive bacteria (G+) and bacteria, fungi, actinomycetes, and arbuscular mycorrhizal fungi (AMF) PLFA contents ranged from 14 to 40 % across the three seasons. We also observed that the absolute activities of C, N, and P hydrolyses and oxidases were inhibited by ammonium and nitrate, but that nitrate had stronger inhibitory effects on the activities of acid phosphatase (AP) than ammonium. The activities of N-acquisition specific enzymes (enzyme activities normalized by total PLFA contents) were about 21 and 43 % lower in the ammonium and nitrate treatments than in the control, respectively. However, the activities of P-acquisition specific enzymes were about 19 % higher in the ammonium treatment than in the control. Using redundancy analysis (RDA), we found that the measured C, N, and P hydrolysis and polyphenol oxidase (PPO) activities were positively correlated with the soil pH and ammonium contents, but were negatively correlated with the nitrate contents. The PLFA biomarker contents were positively correlated with soil pH, soil organic carbon (SOC), and total N contents, but were negatively correlated with the ammonium contents. The soil enzyme activities varied seasonally, and were highest in March and lowest in October. In contrast, the contents of the microbial PLFA biomarkers were higher in October than in March and June. Ammonium may inhibit the contents of PLFA biomarkers more strongly than nitrate because of acidification. This study has provided useful information about the effects of ammonium and nitrate on soil microbial communities and enzyme activities.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Heng Gui ◽  
Kevin Hyde ◽  
Jianchu Xu ◽  
Peter Mortimer

Abstract Although there is a growing amount of evidence that arbuscular mycorrhizal fungi (AMF) influence the decomposition process, the extent of their involvement remains unclear. Therefore, given this knowledge gap, our aim was to test how AMF influence the soil decomposer communities. Dual compartment microcosms, where AMF (Glomus mosseae) were either allowed access (AM+) to or excluded (AM−) from forest soil compartments containing litterbags (leaf litter from Calophyllum polyanthum) were used. The experiment ran for six months, with destructive harvests at 0, 90, 120, 150, and 180 days. For each harvest we measured AMF colonization, soil nutrients, litter mass loss, and microbial biomass (using phospholipid fatty acid analysis (PLFA)). AMF significantly enhanced litter decomposition in the first 5 months, whilst delaying the development of total microbial biomass (represented by total PLFA) from T150 to T180. A significant decline in soil available N was observed through the course of the experiment for both treatments. This study shows that AMF have the capacity to interact with soil microbial communities and inhibit the development of fungal and bacterial groups in the soil at the later stage of the litter decomposition (180 days), whilst enhancing the rates of decomposition.


2019 ◽  
Author(s):  
Chelsea J. Carey ◽  
Sydney I. Glassman ◽  
Thomas D. Bruns ◽  
Emma L. Aronson ◽  
Stephen C. Hart

AbstractGiant sequoia (Sequoiadendron giganteum) is an iconic conifer that lives in relic populations on the western slopes of the California Sierra Nevada. In these settings it is unusual among the dominant trees in that it associates with arbuscular mycorrhizal fungi rather than ectomycorrhizal fungi. However, it is unclear whether differences in microbial associations extends more broadly to non-mycorrhizal components of the soil microbial community. To address this question we characterized microbiomes associated with giant sequoia and co-occurring sugar pine (Pinus lambertiana) by sequencing 16S and ITS1 of the bulk soil community at two groves with distinct parent material. We found tree-associated differences were apparent despite a strong grove effect. Bacterial/archaeal richness was greater beneath giant sequoia than sugar pine, with a unique core community that was double the size. The tree species also harbored compositionally distinct fungal communities. This pattern depended on grove but was associated with a consistently elevated relative abundance of Hygrocybe species beneath giant sequoia. Compositional differences between host trees correlated with soil pH, calcium availability, and soil moisture. We conclude that the effects of giant sequoia extend beyond mycorrhizal mutualists to include the broader community, and that some but not all host tree differences are grove-dependent.


2019 ◽  
Vol 62 (1) ◽  
Author(s):  
Hyeon Ji Cho ◽  
Young Han Lee ◽  
Si-Lim Choi ◽  
Dong Cheol Seo ◽  
Sung Ran Min ◽  
...  

AbstractOrganic farming has positive effects on soil microbial population, process, and activity. To examine effects of two different management methods (organic farming vs. conventional farming) on the cultivation of Japanese apricot, contents of fatty acid methyl ester (FAME), total glomalin, and soil chemical properties were analyzed and compared. The organic farming practice resulted in significantly higher contents of organic matter, total FAME, total bacteria, Gram-negative bacteria, arbuscular mycorrhizal fungi, and total glomalin than the conventional farming practice. Soil organic matter showed positive correlation with contents of soil microbial biomass, total bacteria, total glomalin, Gram-positive bacteria, Gram-negative bacteria, actinomycetes, and arbuscular mycorrhizal fungi. In 2018, the organic farming practice resulted in lower ratios of cy17:0 and 16:1ω7c than the conventional farming practice, indicating that microbial stress was reduced by the input of organic fertilizer into soil. Based on principal component analyses (PCA) of soil microbial communities, ratios of cy17:0 to 16:1ω7c in orchid soil can be used as microbial indicators to distinguish organically farmed orchard soil from conventionally farmed orchard soil.


Agriculture ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 1
Author(s):  
Babacar Thioye ◽  
Marc Legras ◽  
Lisa Castel ◽  
François Hirissou ◽  
Naouel Chaftar ◽  
...  

Soil microorganisms play a central role in biological soil functioning. One of the beneficial microbiota that has a symbiotic association with most of the plants is arbuscular mycorrhizal fungi (AMF). Nevertheless, little is known about the impact of cover crops—widely used in conservation agriculture or organic farming—on native mycorrhizal fungi. This study was conducted in Southern France, in 20-year-old walnut orchards, where faba bean (Vicia faba Roth) was intercropped. To find whether the native AM fungal community associated with walnut trees was influenced by cover crops and soil microbial communities, analyses of soil physicochemical and microbiological indicators were carried out with roots and soil samples collected from four modalities (walnut in conventional farming with and without cover crops, and walnut in organic farming with and without cover crops). Our results showed that the presence of cover crops mainly influenced the soil microbial abundance and activities in conventional plots. In contrast, cover crops stimulated AM fungal colonization of walnut roots in organic plots, reaching 35% and 54% for arbuscule abundance and mycorrhizal intensity, respectively. In conventional plots, ergosterol and mineral nitrogen contents were mainly correlated with mycorrhizal colonization, while only acid phosphatase activity in soil was positively correlated with mycorrhizal colonization in organic plots. The use of the faba bean showed the great role played by cover crops in the enhancement of walnut trees’ mycorrhizal colonization. Identification of the functional traits of AM fungi sensitive to walnut trees is required to inform decisions in specific agricultural practices.


Sign in / Sign up

Export Citation Format

Share Document